Rigorously Speaking,
What are We!?

Bringsjord v. Granger

Rigorously Speaking,
What are We!?

Bringsjord v. Granger

Questions re S5 Problems?

(Gotta read book if new to modal logic.)

Toward Metalogical Problem 2 — option |
(Review Speedup!)

Toward Metalogical Problem 2 — option |
(Review Speedup!)

(forall (n) (= (func n 1) (1nc 1)))

Toward Metalogical Problem 2 — option |
(Review Speedup!)

(forall (n) (= (func n 1) (1nc 1)))

(forall (x) (= (func 1 (1inc x)) (inc (1nc (func 0 x)))))

Toward Metalogical Problem 2 — option |
(Review Speedup!)

(forall (n) (= (func n 1) (1nc 1)))

(forall (x) (= (func 1 (1inc x)) (inc (1nc (func 0 x)))))

(forall (n x) (= (func (inc n) (1nc x) (func n (func (1nc n) x))))

Toward Metalogical Problem 2 — option |
(Review Speedup!)

(forall (n) (= (func n 1) (1nc 1)))

(forall (x) (= (func 1 (1inc x)) (inc (1nc (func 0 x)))))

(forall (n x) (= (func (inc n) (1nc x) (func n (func (1nc n) x))))

(NatNum 1)

Toward Metalogical Problem 2 — option |
(Review Speedup!)

(forall (n) (= (func n 1) (1nc 1)))

(forall (x) (= (func 1 (1inc x)) (inc (1nc (func 0 x)))))

(forall (n x) (= (func (inc n) (1nc x) (func n (func (1nc n) x))))

(NatNum 1)
(forall (n) (1f (NatNum n) (NatNum (inc n))))

Toward Metalogical Problem 2 — option |
(Review Speedup!)

(forall (n) (= (func n 1) (1nc 1)))

(forall (x) (= (func 1 (1inc x)) (inc (1nc (func 0 x)))))

(forall (n x) (= (func (inc n) (1nc x) (func n (func (1nc n) x))))

(NatNum 1)
(forall (n) (1f (NatNum n) (NatNum (inc n))))

Toward Metalogical Problem 2 — option 2

(Review k-order ladder)

Toward Metalogical Problem 2 — option 2

(Review k-order ladder)

Does £, = TOL work in HyperSlate! Partially?
Not at all! What's possible and what's not?
What exactly i1s needed inference-rule-wise for
a full natural-deduction system for TOL. Can a
chatbot like GPT-4 or Bard etc. handle TOL
reasoning challenges expressed in English?
What specimens do you have for your answer?

Some Roots of the Debate

Theoretical Computer Science 633 (2016) 100-111

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The grammar of mammalian brain capacity @CrossMark

A. Rodriguez, R. Granger~

6207 Moore Hall, Dartmouth College, Hanover, NH 03755, United States

ARTICLE INFO ABSTRACT
Article history: Uniquely human abilities may arise from special-purpose brain circuitry, or from concerted
Received 8 November 2015 general capacity increases due to our outsized brains. We forward a novel hypothesis of the

Received in revised form 21 December 2015
Accepted 16 March 2016
Available online 21 March 2016

relation between computational capacity and brain size, linking mathematical formalisms
of grammars with the allometric increases in cortical-subcortical ratios that arise in large
brains. In sum, i) thalamocortical loops compute formal grammars; ii) successive cortical

Keywords: regions describe grammar rewrite rules of increasing size; iii) cortical-subcortical ratios
Brain allometry determine the quantity of stacks in single-stack pushdown grammars; iv) quantitative
Grammars increase of stacks yields grammars with qualitatively increased computational power. We
High-order pushdown automata arrive at the specific conjecture that human brain capacity is equivalent to that of indexed
Thalamocortical circuits grammars - far short of full Turing-computable (recursively enumerable) systems. The

work provides a candidate explanatory account of a range of existing human and animal
data, addressing longstanding questions of how repeated similar brain algorithms can be
successfully applied to apparently dissimilar computational tasks (e.g., perceptual versus
cognitive, phonological versus syntactic); and how quantitative increases to brains can
confer qualitative changes to their computational repertoire.

© 2016 Published by Elsevier B.V.

1. Brain growth shows surprisingly few signs of evolutionary pressure

Different animals exhibit different mental and behavioral abilities, but it is not known which abilities arise from special-
izations in the brain, i.e, circuitry to specifically support or enable particular capacities. Evolutionary constraints on brain
construction severely narrow the search for candidate specializations. Although mammalian brain sizes span four orders of
magnitude | 1], the range of structural variation differentiating those brains is extraordinarily limited.

An animal’s brain size can be roughly calculated from its body size |2], but much more telling is the relationship between
the sizes of brains and of their constituent parts: the size of almost every component brain circuit can be computed with
remarkable accuracy just from the overall size of that brain [1,3-5], and thus the ratios among brain parts (e.g. cortical to
subcortical size ratios) increase in a strictly predictable allometric fashion as overall brain size increases [6,7] (Fig. 1).

These allometric regularities obtain even at the level of individual brain structures (e.g., hippocampus, basal ganglia,
cortical areas). There are a few specific exceptions to the well-documented allometric rule (such as the primate olfactory
system [8]), clearly demonstrating that at least some brain structure sizes can be differentially regulated in evolution, yet
despite this capability, it is extremely rare for telencephalic structures ever to diverge from the allometric rule [4,6,79].
Area 10, the frontal pole, is the most disproportionately expanded structure in the human brain, and has sometimes been
argued to be selected for differential expansion, yet the evidence has strongly indicated that area 10 (and the rest of anterior
cortex) are nonetheless precisely the size that is predicted allometrically [6,7,10,11].

* Corresponding author.
E-mail address: Richard.Granger@gmail.com (R. Granger).

http://dx.doi.org/10.1016/j.tcs.2016.03.021
0304-3975/© 2016 Published by Elsevier B.V.

Available online at www.sciencedirect.com

.GIENC!@DII!CT' Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 317 (2004) 167190

www.elsevier.com/locate/tcs

The modal argument for hypercomputing minds

Selmer Bringsjord*, Konstantine Arkoudas

Department of Computer Science, Department of Cognitive Science, Rensselaer AI &
Reasoning Laboratory, Rensselaer Polytechnic Institute (RPI), Troy, NY 12180, USA

Received 14 July 2003; received in revised form 21 October 2003

Abstract

We now know both that hypercomputation (or super-recursive computation) is mathemati-
cally well-understood, and that it provides a theory that according to some accounts for some
real-life computation (e.g., operating systems that, unlike Turing machines, never simply output
an answer and halt) better than the standard theory of computation at and below the “Turing
Limit.” But one of the things we do not know is whether the human mind hypercomputes, or
merely computes—this despite informal arguments from Godel, Lucas, Penrose and others for
the view that, in light of incompleteness theorems, the human mind has powers exceeding those
of TMs and their equivalents. All these arguments fail; their fatal flaws have been repeatedly
exposed in the literature. However, we give herein a novel, formal modal argument showing that
since it’s mathematically possible that human minds are hypercomputers, such minds are in fact
hypercomputers. We take considerable pains to anticipate and rebut objections to this argument.
(© 2003 Elsevier B.V. All rights reserved.

Keywords: Computationalism; Hypercomputation; Incompleteness theorems

1. Introduction

Four decades ago, Lucas [50] expressed supreme confidence that Godel’s first in-
completeness theorem (= Godel I) entails the falsity of computationalism, the view
that human persons are computing machines (e.g., Turing machines). Put barbarically,
Lucas’ basic idea is that minds are more powerful than Turing machines. Today, given
our understanding of hypercomputation in theoretical computer science, and given the
absolute consensus reigning in cognitive science that the human mind is, at least in
large part, some sort of information-processing device, we know enough to infer that
if Lucas is right, the mind is a hypercomputer. However, Lucas’ arguments have

* Corresponding author.
E-mail addresses: selmer@rpi.edu (S. Bringsjord), koud@ai.mit.edu (K. Arkoudas).

0304-3975/S - see front matter (©) 2003 Elsevier B.V. All rights reserved.
doi:10.1016/.tcs.2003.12.010

Some Roots of the Debate

Granger: Bringsjord:
We're less than a Turing machine! We’re more than a Turing machine!

don't yet know how to handle 'non-
inearrty” In all of this, precisely. Maybe

you can help. Here are some pointers,
thoughts, Inrtial constraints/structures ..."

FOL

5 5 SOL
epistemic [

FOL

. . SOL
epistemic |
; ; ; 00
temporal o

Art of Infallibility |

e o

temporal+epistemic
temporal+epistemic+deontic

Art of Infallibility |

e o

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

e o

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics
°

Art of Infallibility |

FOL

. . SOL
epistemic :
heterogeneous/visual temPOI"a|

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

. . SOL
epistemic :
heterogeneous/visual temPOI"a|

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | ¢

. . SOL
epistemic :
heterogeneous/visual temPOI"a|

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | ¢

. . SOL
epistemic :
heterogeneous/visual temPOI"a|

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | &

Vivid
®

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | #

DCEC”

Deontic Cognitive Event Calculus
(with Castaiieda’s *)

5 5 SOL

epistemic -
temporal

heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics ‘

Art of Infallibility |

Infinitary (Aol 2) | €

DCEC”

Deontic Cognitive Event Calculus
(with Castaiieda’s *)

| natural language semantics (non-Montagovian)

2. higher-cognition tests (for Psychometric Al)
(false-belief test, deliberative mind-reading
mirror test for self-consciousness ...)

3. ethically correct robots
4.biz & econ simulation

5 5 SOL

epistemic -
temporal

heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics ‘

Art of Infallibility |

Infinitary (Aol 2) | #

DCEC”

Deontic Cognitive Event Calculus
(with Castaiieda’s *)

5 5 SOL

epistemic -
temporal

heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics ‘

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | &

5 5 SOL

epistemic -
temporal

heterogeneous/visual

temporal+epistemic

temporal+epistemic+deontic
°
°
°

+planning+arg semantics

Godel’s “God Theorem”

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | &

FOL

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

ITS (Culture, Language, Math)

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | &

Al-ified Axiomatic Physics!
(Synthese)

@ [N @
2 . SO
epistemic
heterogeneous/visual temporal

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | &

Goodstein’s Theorem! ‘

Logic
2 . SO
epistemic
heterogeneous/visual temporal

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | ¢

5 5 SOL
epistemic [
temporal
heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics

Art of Infallibility |

Infinitary (Aol 2) | #

DCEC”

Deontic Cognitive Event Calculus
(with Castaiieda’s *)

5 5 SOL

epistemic -
temporal

heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics ‘

Art of Infallibility |

Infinitary (Aol 2) | €

DCEC”

Deontic Cognitive Event Calculus
(with Castaiieda’s *)

|. natural language semantics (non-Montagovian)

2. higher-cognition tests (for Psychometric Al)
(false-belief test, deliberative mind-reading
mirror test for self-consciousness ...)

3. ethically correct robots
4. Basis for RL: Learning Ex Nihilo

5 5 SOL

epistemic -
temporal

heterogeneous/visual

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics ‘

Art of Infallibility |

Infinitary (Aol 2) | €

DCEC”

Deontic Cognitive Event Calculus
(with Castaiieda’s *)

|. natural language semantics (non-Montagovian)

2. higher-cognition tests (for Psychometric Al)
(false-belief test, deliberative mind-reading
mirror test for self-consciousness ...)

' 4. Basis for RL: Learning Ex Nihilo)

Logic
2 . SO
epistemic
heterogeneous/visual temporal

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics ‘

Art of Infallibility |

Animal-Level Al

Super-Serious Human Cognitive Power

Serious Human Cognitive Power

Entscheidungsproblem

Mere Calculative Cognitive Power

Animal-Level Al

Analytical Hierarchy

Serious Human Cognitive Power

Entscheidungsproblem

Mere Calculative Cognitive Power

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Entscheidungsproblem

Mere Calculative Cognitive Power

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Entscheidungsproblem

Polynomial Hierarchy

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Entscheidungsproblem

Polynomial Hierarchy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

2.0
Entscheidungsproblem

Polynomial Hierarchy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Go:AlphaGo 2 2
O I,
2.1

2.0

Entscheidungsproblem

Polynomial Hierarchy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Jeopardy!: Watson Go:AlphaGo Z]2
O O 114

211

2.0

Entscheidungsproblem

Polynomial Hierarchy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Chess: Deep Blue ‘Ieopardy!: Watson Go:AlphaGo 22
O O O IT,
2.1

2.0

Entscheidungsproblem

Polynomial Hierarchy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Checkers: Chinook Chess: Deep Blue Jeopardy': Watson - Go:AlphaGo 22
O O O O 11,
2.1

2.0

Entscheidungsproblem

Polynomial Hierarchy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

212
11
211
. 240
i . Chess: Deep Blue Entscheidungsproblem
Polynomial Hierarchy ®
Jeopardy!: Watson e AlphaGCoheCkesChinook

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

i
2.2
114
201
. Z O
. . Chese Deen Bluc Entscheidungsproblem
Polynomial Hierarchy ®
Jeopardy!: Watson Go: A|phaGCoheCkesChin°°k

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

Church H 5

2.2

11

2]

. 240

. . Chess: Deep Blue Entscheidungsproblem
Polynomial Hierarchy ®

Jeopardy!: Watson - AlphaGCOheCkesChinOOk LTy

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Animal-Level Al

Analytical Hierarchy

Arithmetical Hierarchy

11
2.2
11
2]
. 20
. . Chess: Deep Blue Entscheidungsproblem
Polynomial Hierarchy ®
Jeopardy!: Watson - AlphaGCOheCkesChinook

P C NP C PSPACE = NPSPACE C EXPTIME C NEXPTIME C EXPSPACE

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

IX,

>
wry

, M
N

O“/_ﬁ\%/ . /

>
|
Ng|
|
e
|
=
|
>

=
N

Z
av
|
¢
—
|
Q
o
Z,
av

INLEN LN

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

3 3

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

=
N

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

P o

3 3

L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

=
N

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

We say that a relation R(u,y,, ...,y,) IS
polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

Phe

L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

s iy

\Ap/ E.g. We can prove SAT € NP because we have a

’ polytime relation R s.t. ¢ € SAT iff
/ \ JyR(¢p € £, (assignments to Boolean vars)), where these
P P .
>3 \ /H2 assignments produce truth.
PNP — A‘I;

NP = 5P I = coNP

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

) - L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).
23 3
\Ap/ E.g. We can prove SAT € NP because we have a
’ polytime relation R s.t. ¢ € SAT iff
/ \ JyR(¢p € £, (assignments to Boolean vars)), where these
P P .
>3 \ /H2 assignments produce truth.
PN = AP
/ \ L € coNP Iff: there's a polytime
| toue L Iff VyR(u,y).
NP - P P — coNp relation R st u e yR(u, y)

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

Phe

) - L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).
E3 3
\Ap/ E.g. We can prove SAT € NP because we have a
’ polytime relation R s.t. ¢ € SAT iff
/ \ JyR(¢p € £, (assignments to Boolean vars)), where these
P P .
>3 \ /H2 assignments produce truth.
PN = AP
/ \ L € coNP Iff: there's a polytime
ion R s.t.u e L Iff YyR(u,y).
NP - P P — coNp relation R s.t. u € yR(u,y)
AP —¥P — P — 1P — AP o prove coSAT € coNP, we note that we have a

polytime relation R st. ¢ € coSAT Iff
VyR(¢ € &£, (assignments to Boolean vars)), where the
assisnments produce falsity.

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

We say that a relation R(u,y,, ...,y,) IS
polytime Iff there Is a deterministic Turing

Machine m and a polynomial p s.t. m
decides this relation in p(Jul).

L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

E.g.. We can prove SAT € NP because we have a
lytime relation R s.t. ¢ € SAT Iff

AyH(p € Z ., (assignments to Boolean vars)), where these
assignments produce truth.

T~

L € coNP Iff. there's a polytime
relation R st. u € L Iff YyR(u,y).

To prove coSAT € coNP, we note that we have a
polytime relation R st. ¢ € coSAT Iff

VyR(¢ € &£, (assignments to Boolean vars)), where the
assisnments produce falsity.

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

)) L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

E.g.. We can prove SAT € NP because we have a
lytime relation R s.t. ¢ € SAT Iff

AyH(p € Z ., (assignments to Boolean vars)), where these
assignments produce truth.

50\:/ \

L € coNP Iff. there's a polytime
relation R st. u € L Iff YyR(u,y).

To prove coSAT € coNP, we note that we have a
lytime relation R s.t. ¢ € coSAT Iff

VyR(¢p € &£, (assignments to Boolean vars)), where the

assisnments produce falsity.

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

)) L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

E.g.. We can prove SAT € NP because we have a
lytime relation R s.t. ¢ € SAT Iff

AyH(p € Z ., (assignments to Boolean vars)), where these

assignments produce truth.

S
N <
4

L € coNP Iff. there's a polytime
relation R st. u € L Iff YyR(u,y).

To prove coSAT € coNP, we note that we have a
lytime relation R s.t. ¢ € coSAT Iff

VyR(¢p € &£, (assignments to Boolean vars)), where the

assisnments produce falsity.

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

)) L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

E.g.. We can prove SAT € NP because we have a
lytime relation R s.t. ¢ € SAT Iff

AyH(p € Z ., (assignments to Boolean vars)), where these

assignments produce truth.

S
N <
4

L € coNP Iff. there's a polytime
relation R st. u € L Iff YyR(u,y).

To prove coSAT € coNP, we note that we have a
lytime relation R s.t. ¢ € coSAT Iff
VyR(¢p € &£, (assignments to Boolean vars)), where the

] in HS® wi | |
(Or a truth-graph y in HS® with at least one open branch.) aSS|gnmentS produce fd/Slty.

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

We say that a relation R(u,y,, ...,y,) IS

polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

)) L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

E.g.. We can prove SAT € NP because we have a
lytime relation R s.t. ¢ € SAT Iff

AyH(p € Z ., (assignments to Boolean vars)), where these

assignments produce truth.

S
N <
4

L € coNP Iff. there's a polytime
relation R st. u € L Iff YyR(u,y).

To prove coSAT € coNP, we note that we have a
lytime relation R s.t. ¢ € coSAT Iff

VyR(¢p € &£, (assignments to Boolean vars)), where the

assisnments produce falsity.

'\/

(Or a truth-graph y in HS® with at least one open branch.)

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

(Or a truth-graph y in HS® with at least one open branch.)

We say that a relation R(u,y,, ...,y,) IS
polytime Iff there Is a deterministic Turing
Machine m and a polynomial p st. m
decides this relation in p(Jul).

L e NP [ff; there’s a polytime relation R s.t.u € L iff 3yR(u, y).

E.g.. We can prove SAT € NP because we have a
lytime relation R s.t. ¢ € SAT Iff

AyH(p € Z ., (assignments to Boolean vars)), where these

assignments produce truth.

T~

L € coNP Iff. there's a polytime
relation R st. u € L Iff YyR(u,y).

To prove coSAT € coNP, we note that we have a
lytime relation R s.t. ¢ € coSAT Iff
VyR(¢p € &£, (assignments to Boolean vars)), where the

assisnments produce falsity.

(Or every truth-graph y in HS® has no open branch

roopentrand)

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

IX,

>
wry

, M
N

O“/_ﬁ\%/ . /

>
|
Ng|
|
e
|
=
|
>

=
N

Z
av
|
¢
—
|
Q
o
Z,
av

INLEN LN

Z,
&,
|

\g|

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

IX,

“What's that A??”

>
wry

, M
N

2N N\ S

>
|
Ng|
|
e
|
=
|
>

=
N

—
|
o
o
Z,
&)

INLEN LN

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

IX,

"What's tha A7>

>
wry

, M
N

2N N\ S

>
|
Ng|
|
e
|
=
|
>

=
N

Z,
&,
|
\g|
—
|
Q
S
Z,
&,

INLEN LN

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

P o

“What's that

Polynomial Hierarchy, Part |

(via formal logic, directly; a start)

Phe

- Z)/T — coNP

“What's that

Ah. This Is not a direct analogue to the AH. The
arrows going up do Indicate containment, but
the purely “logicist” notation based on
quantifiers Is apparently mixed here
(dangerously). The “Delta notation” Is the oracle
approach to building up PH. The avallability of
an oracle e.g. for NP questions from P-solving
machine would subsume both NP and colNF etc.

Polynomial Hierarchy, Part Il

(via formal logic, directly)

3 Ty

>
wry

, M
N

O“/_ﬁ\%/ N S

=
N

Z
av
|
¢
—
|
Q
o
Z,
av

>
|
Ng|
|
e
|
=
|
>

INLEN LN

Polynomial Hierarchy, Part Il

(via formal logic, directly)

3 Ty

>
wry

, M
N

°“°/ﬁ\“%/ N S

=
N

Z,
&,
|
\g|
—
|
Q
S
Z,
&,

>
|
Ng|
|
e
|
=
|
>

INLEN LN

Polynomial Hierarchy, Part Il

(via formal logic, directly)

IX,

‘
:3
AN

Eg:

(p1,k) € L iff dpoVaKLogEquiv(pr, do, |d2| < k,al(d1) = alps2))

>
wry

NSNS\

, M
N

SN S

=
N

—
=)
|
o
o
Z,
&)

NP = ¥P

N\t

AP —¥P — p —TIF — AP

Polynomial Hierarchy, Part Il

(via formal logic, directly)

Eg:

KLogEquiv(p1, 2, 02| < k,a(p1) = a(g2))

NP = = coNP

Polynomial Hierarchy, Part Il

(via formal logic, directly)

the

KLogEquiv(¢1, ¢2, |p2| < k,a(p1) = a(p2))

Polynomial Hierarchy, Part Il

(via formal logic, directly)

we

(p1, k) € L iff(ApoVaKLogEquiv(pr, ¢o, |po| < k,a(d1) = a(ds))

N

PN = AP

/N

NP = ¥P ¥ = coNP

N S

AP =3P =P =T = AP

Now we generalize:

Polynomial Hierarchy, Part Il

(via formal logic, dlrectly)

free variables

(p1, k) € L iff(ApaVal LOgEquw(gbl b2, |d2| < k, a(p1) = a(ps))

Now we generalize:

PNP _ AT (Q; =V if i even; Q; = 3 if ¢ odd)
NP = ¥P / \H{“ — coNP

N S

AP =3P =P =T = AP

Polynomial Hierarchy, Part Il

(via formal logic, directly)

free variables
'ﬁ Q /\ Eg:

Ay Now we generalize:
N v € 3; il 3R Jy1Vy2 -+ QiviR(z, y1, Y2, - - -, Yi)
PNP _ AT (Q; =V if i even; Q; = 3 if ¢ odd)

NP = ¥P

M=t e L iff 3R Yy Jys - - - Qi R(2, y1, v, - - -, Us)
\ / (Q; = 3 if j even; Q); =V if j odd)

AP =3P =P =T = AP

Polynomial Hierarchy, Part Il

(via formal logic, directly)

— free variables

the o ©

KLogEquiv(p1, 2, 02| < k,a(p1) = a(g2))

Ay Now we generalize:
N v € 3; il 3R Jy1Vy2 -+ QiviR(z, y1, Y2, - - -, Yi)
PNP _ AT (Q; =V if i even; Q; = 3 if ¢ odd)

NP = ¥P

M=t e L iff 3R Yy Jys - - - Qi R(2, y1, v, - - -, Us)
\ / (Q; = 3 if j even; Q); =V if j odd)

AP =3P =P =T = AP

CogSci and Al need to say more about
AnH (Analytic Hierarchy) where Al falls/can fall in the landscape.

Infinite Time Turing Machines (ITTMs)

Human Persons
(according to Bringsjord)

A"H (Arithmetic Hierarchy)

O O O

Human Brains
(according to Granger)

CH (Chomsky Hierarchy)

Turing Machines (TMs)
0 8
A1

(decidable formulae) Linear Bounded Automata (LBAS)

Push Down Automata (PDAs)

Finite State Automata (FSAs)

CogSci and Al need to say more about
AnH (Analytic Hierarchy) where Al falls/can fall in the landscape.

Infinite Time Turing Machines (ITTMs)

Human Persons
(according to Bringsjord)

A"H (Arithmetic Hierarchy)

O O O

Human Brains
(according to Granger)

CH (Chomsky Hierarchy)

Turing Machines (TMs)

Ay

Linear Bounded Automata (LBAS)

(decidable formulae)

Push Down Automata (PDAs)

Finite State Automata (FSAs)

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH!?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

Let R be a Turing-decidable (= decidable,
ATH (Arithmetic Hierarchy) simpliciter) dyadic relation. Where is the set:
x 2 3yR(x, y) 1,

| 2 3 or4?

0.0 0.0 O

semi-decidable
0 0
&_//' E 1 I H 1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH!?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

Let R be a Turing-decidable (= decidable,
simpliciter) dyadic relation. Where is the set:

{x : VyR(x,y)},
| 2 3 or4?

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0

semi-decidable

N I 3

0.0 O

4 119

A

(decidable formulae)

Arithmetic Hierarchy, Part |

0 _ 50 0
A =300 TI°

Let R be a Turing-decidable (= decidable,
simpliciter) dyadic relation. Where is the set:

{x : VyR(x,y)},
| 2 3 or4?

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

Let R be a Turing-decidable (= decidable,
simpliciter) dyadic relation. Where is the set:

{x : VyR(x,y)},
| 2 3 or4?

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

xr € Hz iff AR vy13y2 " 'QiyiR(xaylay% <. 7y’L)
(Q; = Fif j even; Q; =V if j odd)

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

Let R be a Turing-decidable (= decidable,
simpliciter) dyadic relation. Where is the set:

{x : VyR(x,y)},
| 2 3 or4?

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

xr € Hz iff AR vy13y2 T szzR(xa Y, Y2, .- 7y’L)
(Q; = Fif j even; Q; =V if j odd)

Try your hand at classifying! ...

semi-decidable
0 0
1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

@
2SA%FUNC = {my, my : VuVo[Fk((my,u) : v,k < K ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, K, consists of all
those inputs to a given Turing machine m that results in

semi-decidable this machine halting after some number of steps.

— | X

A

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, K, consists of all

, , those inputs to a given Turing machine m that results in
semi-decidable

.

mo this machine halting after some number of steps.
1 1
A

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, K, consists of all

, , those inputs to a given Turing machine m that results in
semi-decidable

- — | X

this machine halting after some number of steps.
0 n
A1

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

H ®

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 119

(decdabﬁrmuae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 Z 11?9

(decidable formulae)

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 119

0
A1 The set to be classified is the set of all pairs of programs
(decidable formulae) P, and P, sit. both compute exactly the same functions.

0 _ 50 0
A =300 TI°

Arithmetic Hierarchy, Part |

Can you see the carryover from PH?

2SAMEFUNC = {my, my : VuVo[Fk({my,u) : v,k < &' ((mo, u) : v, k)]

A"H (Arithmetic Hierarchy)

0.0 0.0 O

x € X, iff AR Iy Vyo - Qiyi R(x, Y1, Y2, - -+, Yi)
(Q; =V if i even; Q; = F if i odd)

x € ll; iff AR Vylflyz et szzR(xa Y, Y2, .- 7y’L)
(Q; = 3 if j even; Q); =V if j odd)

Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 119

0
A1 The set to be classified is the set of all pairs of programs
(decidable formulae) P, and P, sit. both compute exactly the same functions.

AV =3VNTD
(forall (u v) (exists (k1 k2)
(iff Ccomp ml u v k1)

Arithmetic Hierarchy, Part |

What about (oft vaunted) quantum computers!?

Harder Problems

What about (oft vaunted) quantum computers?

Box packing
Map coloring
Traveling salesman
n x n Sudoku

NP -

» Complete

Graph isomorphism

BQP

Factoring
Discrete logarithm

Graph connectivity

Testing if a number P
is a prime

Matchmaking

Efficiently solved by
classical computer

Efficiently solved by
quantum computer

A What about (oft vaunted) quantum computers?
/N

Box packing
Map coloring
Traveling salesman
n x n Sudoku

NP -
 Complete

%)

£

9

e} Graph isomorphism

o ®

LSS

(a

By

Q

O

L=

©

I

Efficiently solved by

Graph connectivity quantum computer
Testing if a number P

IS a prime
Matchmaking

Efficiently solved by
classical computer

