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Does £, = TOL work in HyperSlate! Partially?
Not at all! What's possible and what's not?
What exactly i1s needed inference-rule-wise for
a full natural-deduction system for TOL. Can a
chatbot like GPT-4 or Bard etc. handle TOL
reasoning challenges expressed in English?
What specimens do you have for your answer?




Some Roots of the Debate

Theoretical Computer Science 633 (2016) 100-111

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The grammar of mammalian brain capacity @CrossMark

A. Rodriguez, R. Granger~

6207 Moore Hall, Dartmouth College, Hanover, NH 03755, United States

ARTICLE INFO ABSTRACT
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relation between computational capacity and brain size, linking mathematical formalisms
of grammars with the allometric increases in cortical-subcortical ratios that arise in large
brains. In sum, i) thalamocortical loops compute formal grammars; ii) successive cortical

Keywords: regions describe grammar rewrite rules of increasing size; iii) cortical-subcortical ratios
Brain allometry determine the quantity of stacks in single-stack pushdown grammars; iv) quantitative
Grammars increase of stacks yields grammars with qualitatively increased computational power. We
High-order pushdown automata arrive at the specific conjecture that human brain capacity is equivalent to that of indexed
Thalamocortical circuits grammars - far short of full Turing-computable (recursively enumerable) systems. The

work provides a candidate explanatory account of a range of existing human and animal
data, addressing longstanding questions of how repeated similar brain algorithms can be
successfully applied to apparently dissimilar computational tasks (e.g., perceptual versus
cognitive, phonological versus syntactic); and how quantitative increases to brains can
confer qualitative changes to their computational repertoire.

© 2016 Published by Elsevier B.V.

1. Brain growth shows surprisingly few signs of evolutionary pressure

Different animals exhibit different mental and behavioral abilities, but it is not known which abilities arise from special-
izations in the brain, i.e, circuitry to specifically support or enable particular capacities. Evolutionary constraints on brain
construction severely narrow the search for candidate specializations. Although mammalian brain sizes span four orders of
magnitude | 1], the range of structural variation differentiating those brains is extraordinarily limited.

An animal’s brain size can be roughly calculated from its body size |2], but much more telling is the relationship between
the sizes of brains and of their constituent parts: the size of almost every component brain circuit can be computed with
remarkable accuracy just from the overall size of that brain [1,3-5], and thus the ratios among brain parts (e.g. cortical to
subcortical size ratios) increase in a strictly predictable allometric fashion as overall brain size increases [6,7] (Fig. 1).

These allometric regularities obtain even at the level of individual brain structures (e.g., hippocampus, basal ganglia,
cortical areas). There are a few specific exceptions to the well-documented allometric rule (such as the primate olfactory
system [8]), clearly demonstrating that at least some brain structure sizes can be differentially regulated in evolution, yet
despite this capability, it is extremely rare for telencephalic structures ever to diverge from the allometric rule [4,6,79].
Area 10, the frontal pole, is the most disproportionately expanded structure in the human brain, and has sometimes been
argued to be selected for differential expansion, yet the evidence has strongly indicated that area 10 (and the rest of anterior
cortex) are nonetheless precisely the size that is predicted allometrically [6,7,10,11].
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Abstract

We now know both that hypercomputation (or super-recursive computation) is mathemati-
cally well-understood, and that it provides a theory that according to some accounts for some
real-life computation (e.g., operating systems that, unlike Turing machines, never simply output
an answer and halt) better than the standard theory of computation at and below the “Turing
Limit.” But one of the things we do not know is whether the human mind hypercomputes, or
merely computes—this despite informal arguments from Godel, Lucas, Penrose and others for
the view that, in light of incompleteness theorems, the human mind has powers exceeding those
of TMs and their equivalents. All these arguments fail; their fatal flaws have been repeatedly
exposed in the literature. However, we give herein a novel, formal modal argument showing that
since it’s mathematically possible that human minds are hypercomputers, such minds are in fact
hypercomputers. We take considerable pains to anticipate and rebut objections to this argument.
(© 2003 Elsevier B.V. All rights reserved.

Keywords: Computationalism; Hypercomputation; Incompleteness theorems

1. Introduction

Four decades ago, Lucas [50] expressed supreme confidence that Godel’s first in-
completeness theorem (= Godel I) entails the falsity of computationalism, the view
that human persons are computing machines (e.g., Turing machines). Put barbarically,
Lucas’ basic idea is that minds are more powerful than Turing machines. Today, given
our understanding of hypercomputation in theoretical computer science, and given the
absolute consensus reigning in cognitive science that the human mind is, at least in
large part, some sort of information-processing device, we know enough to infer that
if Lucas is right, the mind is a hypercomputer. However, Lucas’ arguments have
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Granger: Bringsjord:
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don't yet know how to handle 'non-
inearrty” In all of this, precisely. Maybe
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To prove coSAT € coNP, we note that we have a
lytime relation R s.t. ¢ € coSAT Iff
VyR(¢p € &£, (assignments to Boolean vars)), where the

assisnments produce falsity.

(Or every truth-graph y in HS® has no open branch

roopentrand)
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(via formal logic, directly; a start)

Phe

- Z)/T — coNP

“What's that

Ah. This Is not a direct analogue to the AH. The
arrows going up do Indicate containment, but
the purely “logicist” notation based on
quantifiers Is apparently mixed here
(dangerously). The “Delta notation” Is the oracle
approach to building up PH. The avallability of
an oracle e.g. for NP questions from P-solving
machine would subsume both NP and colNF etc.
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(via formal logic, directly)

we

(p1, k) € L iff(ApoVaKLogEquiv(pr, ¢o, |po| < k,a(d1) = a(ds))

N

PN = AP

/N

NP = ¥P ¥ = coNP

N S

AP =3P =P =T = AP

Now we generalize:
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free variables

(p1, k) € L iff(ApaVal LOgEquw(gbl b2, |d2| < k, a(p1) = a(ps))

Now we generalize:

PNP _ AT (Q; =V if i even; Q; = 3 if ¢ odd)
NP = ¥P / \H{“ — coNP

N S

AP =3P =P =T = AP
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(Q; =V if i even; Q; = F if i odd)
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Try your hand at classifying! ...

From Kleene: The set to be classified, &/, consists of all
those inputs to a given Turing machine m that results in
this machine halting after some number of steps.

semi-decidable

N I 3 119

0
A1 The set to be classified is the set of all pairs of programs
(decidable formulae) P, and P, sit. both compute exactly the same functions.

AV =3VNTD
(forall (u v) (exists (k1 k2)
(iff Ccomp ml u v k1)

Arithmetic Hierarchy, Part |






What about (oft vaunted) quantum computers!?



Harder Problems

What about (oft vaunted) quantum computers?

Box packing
Map coloring
Traveling salesman
n x n Sudoku

NP -

» Complete

Graph isomorphism

BQP

Factoring
Discrete logarithm

Graph connectivity

Testing if a number P
is a prime

Matchmaking

Efficiently solved by
classical computer

Efficiently solved by
quantum computer



A What about (oft vaunted) quantum computers?
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Box packing
Map coloring
Traveling salesman
n x n Sudoku

NP -
 Complete

%)

£

9

e} Graph isomorphism

o ®

LSS

(a

By

Q

O

L=

©
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Efficiently solved by

Graph connectivity quantum computer
Testing if a number P

IS a prime
Matchmaking

Efficiently solved by
classical computer



