Church's Theorem*

Selmer Bringsjord (w TM slides by Naveen Sundar G)

Rensselaer AI \& Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2 80 USA
Intermediate Formal Logic \& AI (IFLAI2)
9/I I/2023
(ver 9/II/230922NY)

Re HG ${ }^{\circledR}$ Platform, $\mathrm{HS®}$
System, \& Textbook

Re HG ${ }^{\circledR}$ Platform, $\mathrm{HS®}$ System, \& Textbook

HyperGrader ${ }^{\circledR}$ \& HyperSlate ${ }^{\circledR}$ tutorial assimilated?

Re HG ${ }^{\circledR}$ Platform, $\mathrm{HS®}$ System, \& Textbook

HyperGrader ${ }^{\circledR}$ \& HyperSlate ${ }^{\circledR}$ tutorial assimilated?

SwitchingX problems done? ...

Re HG ${ }^{\circledR}$ Platform, $\mathrm{HS®}$ System, \& Textbook

HyperGrader ${ }^{\circledR}$ \& HyperSlate ${ }^{\circledR}$ tutorial assimilated?

SwitchingX problems done? ...

Personalized problems explored/done?

Re HG ${ }^{\circledR}$ Platform, $\mathrm{HS®}$ System, \& Textbook

HyperGrader ${ }^{\circledR}$ \& HyperSlate ${ }^{\circledR}$ tutorial assimilated?
SwitchingX problems done? ...

Personalized problems explored/done?
Public URLs into HyperSlate® ...

Re HG® Platform, $\mathrm{HS®}$ System, \& Textbook

HyperGrader ${ }^{\circledR}$ \& HyperSlate ${ }^{\circledR}$ tutorial assimilated?
SwitchingX problems done? ...

Personalized problems explored/done?
Public URLs into HyperSlate® ...

Questions? ...

HyperLogic ${ }^{\circledR}$

New-Millennium Logic-based Computing \& Artificial Intelligence

HyperGrader ${ }^{\circledR}$

HyperSlate ${ }^{\circledR}$

Hyperlog ${ }^{\circledR}$

Explorations in HyperLogic

Explorations in HyperLogic

Meta-theory of quantifiers for NARS Level-I coverage ...

Explorations in HyperLogic

Meta-theory of quantifiers for NARS Level-I coverage ...

Planning by GPT-4 beyond PDDL? ...

Turing-decidability/computability

Turing Machines

a special state stops the machine

```
stop
```

Program

Even Number Function

- $f(n)=1$ if n is even; else $f(n)=0$

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	I	2	blank	Left
2	blank	stop	।	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	4	blank	Left
4	0	2	0	Same
4	I	3	1	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	2	blank	Left
4	0	3	0	Same
4	1	1	Left	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	l	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	Left	
4		1	Same	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	0	Left
4			I	Lame

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	0	Left
4			Same	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	0	Left
4			I	Lame

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	0	Left
4			Same	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	1	Right
I	0	1	0	Right
1	blank	2	blank	Left
4	0	3	0	Same
4	1			Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
I	1	1	I	Right
I	0	1	0	Right
1	blank	2	blank	Left
4	0	2	0	Same
4	1	3	Left	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	1	Same
1	1	1	1	Right
1	0	1	0	Right
1	blank	2	blank	Left
4	0	2	0	Same
4	1	3	Left	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	I	Right
1	0	1	0	Right
1	blank	2	blank	Left
4	0	3	0	Same
4	1	1	Left	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	l	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	Left	
4		1	Same	

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	I	Same
1	1	1	l	Right
1	0	1	0	Right
1	blank	0	2	blank
4	1	3	Left	
4		1	Same	

- Functions that can be computed in this manner are Turing-computable.
- Functions that can be computed in this manner are Turing-computable.
- Decision problems (Yes/No problems) that can answered in this manner are Turing-decidable. (Here, I can be used for $\mathbf{Y} ; 2$ for \mathbf{N}.)

For more on TMs ...

https://plato.stanford.edu/entries/turing-machine

Theorem: The Halting Problem is Turing-unsolvable.

We assume an encoding ofTMs that permits identification of each with some $m \in \mathbb{Z}^{+}$, and say that the binary halt function h maps a machine and its input to I if that machine halts, and to 2 if it doesn't:

$$
\forall m, n[\operatorname{Goes}(m, n, \text { halt }) \rightarrow h(m, n)=1]
$$

$h(m, n)=1$ if $m: n \longrightarrow$ halt
$h(m, n)=2$ if $m: n \longrightarrow \infty$
So, the theorem we need can be expressed this way:
(\star) $\neg \exists m^{h}\left[m^{h}\right.$ computes $\left.h\right]$
where a TM that computes a function f starts with arguments to f on its tape and goes to the value of f applied to those arguments. Next, let's construct a TM m^{c} that copies a block of I's (separated by a blank \#), and (what BBJ in their Computability \& Logic call) a "dithering"TM:
$m^{d}: n \longrightarrow$ halt if $n>1 ; m^{d}: n \longrightarrow \infty$ if $n=1$

Proof: Suppose for reductio that $m^{h^{*}}$ [this is our witness for the existential quantifier in (\star)] computes h. Then we can make a composite machine m^{3} consisting of m^{c} connected to and feeding $m^{h^{*}}$ which is in turn connected to and feeding m^{d}. It's easy to see (use some paper and pencil/stylus and tablet!) that
(1) if $h(n, n)=1$, then $m^{3}: n \longrightarrow \infty$
and
(2) if $h(n, n)=2$, then $m^{3}: n \longrightarrow$ halt.

To reach our desired contradiction, we simply ask: What happens when we instantiate n to m^{3} in (1) and (2)? (E.g., perhaps the TM m^{3} is 5 , then we would have $h(5,5)$.) The answer to this question, and its leading directly to just what the doctor ordered, is left to the reader (but can be easily enough done/verified in HyperSlate ${ }^{\circledR}$). QED

Proof-by-Cases Verification in HyperSlate ${ }^{\circledR}$

Oracular Verification in HyperSlate ${ }^{\circledR}$

Church's Theorem \& its proof ...

Church's Theorem: The Entscheidungsproblem is Turing-unsolvable.

Proof-sketch: We need to show that the question $\Phi \vdash \phi$? is not Turing-decidable. (Here we are working within the framework of \mathscr{L}_{1}.) To begin, note that competent users of HyperSlate ${ }^{\circledR}$ know that any Turing machine m can be formalized in a HyperSlate ${ }^{\circledR}$ workspace. (Explore! Prove it to yourself in hands-on fashion!) They will also then know that
$(\dagger) \quad \forall m, n \in \mathbb{N} \exists \Phi, \phi[\Phi \vdash \phi \leftrightarrow m: n \longrightarrow$ halt $]$
where Φ and ϕ are built in HyperSlate ${ }^{\circledR}$.

Now, let's assume for contradiction that theoremhood in first-order logic can be decided by a Turing machine m^{t}. But this is absurd. Why? Because imagine that someone now comes to us asking whether some arbitrary TM m halts. We can infallibly and algorithmically supply a correct answer, because we can formalize m in line with (\dagger) and then employ m^{t} to give us the answer. QED

Church slår Turing!

