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A fund: | I limit on I reasoning and its effect on knowledge representation is examined.
Basically, the problem i is that it can be more difficult to reason correctly with one representational I.m\.u.:!.c than with another
and. morcover, that this difficulty increases dr.nm.mull\ .n the expressive power of the l.:m.u increases. This leads to a
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tradeotl can be seen to underlie the differences among a number of existing I formali in 0
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Cet arnticle étudic une limitati putati lle fond le du rai ique et ses effets sur la
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Comput. Intell. 3, 7893 (1987)

1. Introduction

This paper cxamines from a general point of view a basic
computational limit on automated reasoning, and the effect that
ithas on knowledge representation (KR). The problem is essen-
tially that it can be more difficult to reason correctly with one
representational language than with another and, moreover,
that this difficulty increases as the expressive power of the
language increases. There is a tradeoff between the expressive-
ness of a representational | and its computational trac-
sakility. What we attempt to show is that this tradeoff underlie:

logique du premier ordre, schémas, réseaux

[Traduit par la revue]

faults, as well as systems of limited inference and hybrid
reasoning).

To deal with such a broad range of representational phenom-
ena we must, of necessity, take a considerably simplified and
incomplete view of KR. In particular, we focus on its com-
putational and logical aspects, more or less ignoring its history
and relevance in the areas of psychology, linguistics, and phi-
losophy. The area of KR is still very disconnected today and
the rola of logic remains quite controversial, despite what this
paper may suggm We do believe, however, that the tradeoff

differences among a number of representational formalis
(such as first-order logic, databases, semantic networks, and
frames) and motivates many current research issues in KR
(such as the role of analogues, syntactic encodings, and de-

" This is a revised and substantially augmented version of * A Fun-
damental Tradeoff in Knowledge Rep and R " by
Hector J. Levesque, which app d in the Pr 2! uf the

Canadian Society for Computational Studies of Intelligence Confer-
ence, London, Ontario, May 1984. It includes portions of two other
conference papers: “The Tractability of Subsumption in Frame-Based
Description Languages.™ by Ronald J. Brachman and Hector J.
Levesque, which appeared in the Proceedings of the American Asso-
ciation for Artificial Intelligence Conference, Austin, Texas, August
1984; and “What Makes a Knowledge Base Knowledgeable? A View
of Databases from the Knowledge Level.” by the same authors, which
appeared in the Proceedings of the First Intemational Workshop on
Expert Database Systems, Kiawah Island, South Carolina, October
1984, Much of this paper appeared as a chapter in Readings in Knowl-
edge Representation (Morgan Kaufmann Publishers Inc., 1985),
cedited by the authors.
*Fellow of the Canadian Institute for Advanced Research.

d here is fund 1. As long as we are dealing with
computational systems that reason automatically (without any
special intervention or advice) and correctly (once we define
what that means), we will be able to locate where they stand on
the tradeofT: They will either be limited in what knowledge they
can represent or unlimited in the reasoning effort they might
require.

Our computational focus will not lead us to investigate
specific algorithms and data structures for KR and reason-
ing, however. What we discuss is something much stronger,
namely, whether or not algorithms of a certain kind can exist
at all. The analysis here is at the knowledge level (Newell 1981)
where we look at the content of what is represented (in terms
of what it says about the world) and not the symbolic structures
used to represent that knowledge. Indeed, we examine specific
representation schemes in terms of what knowledge they can
represent, rather than in terms of how they might actually
represent it.

In the next section, we discuss what a KR system is for and
what it could mean to reason correctly. Next, we investigate
how a KR service might be realized using theorem proving in
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Bringsjord: Speedup shoots
this down, & hence to ignore
automated reasoning in highly
expressive formats would be
foolish for Al



A Simpler “Speedup” Theorem



A Simpler “Speedup” Theorem

Let f be any recursive function, and again let us
refer to @ D PA. Then there are arithmetic &£
sentences @ st. @ F @, where the shortest proof P
confirming this has more more than f(n? symbols.



To prove GST, we shall once
again allow ourselves ...



Again: The Fixed Point Theorem (FPT)

Assume that @ is a set of arithmetic sentences such
that Repr @. There for every arithmetic formula y(x)
with one free variable x, there Is an arithmetic
sentence ¢ s.t.

D+ ¢ wn?.

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”



Ok;soletsdo it ...



Proof. Let /* be an arbitrary (total) recursive function. We can clearly
define a meta-logical relation that expresses the property of having a proof
in @ of ¢ shorter; symbol-wise, than f(n?), for the Gédel number of any
formula ¢. Let us abbreviate this relation as: Prov-she(¢, n?). By Repr @,
since a Turing machine can compute this relation, we then have:

(Rep*) = (1) Prov-she(n?) iff ® - ¢.

Next, we can instantiate the Fixed Point Theorem to yield a formula that
declares “There’s no proof of me shorter than what f* applied to me
returns!” (And note that we employ a logicization of our meta-logical
relation.). More formally, the instantiation will be:

(FPT*) = (2) @ F 7, & ~P-she(n™)

Now what about this self-referential sentence! Can it have a proof
shorter than f* applied to its Godel number? Suppose for contradiction
that it does. Then by left-to-right on (1) it's provable in ®. But given this,
combined with (2), this self-referential sentence is not provable by a
derivation shorter than f* applied to it — contradiction! QED






Med nok penger, kan
logikk lese alle problemer.



