Godel’s SpeedupTheorem
(GST)

James Oswald & Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAI2
Sep 24 2023

RA I R

Rensselaer Al and Reasoning Lab



Godel’s SpeedupTheorem
(GST)

James Oswald & Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAI2
Sep 24 2023

RA I R

Rensselaer Al and Reasoning Lab

OXFORD

UNIVERSITY PRESS



Godel’s SpeedupTheorem
(GST)

James Oswald & Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAI2
Sep 24 2023

RA I R

Rensselaer Al and Reasoning Lab

OXFORD

UNIVERSITY PRESS




Godel’s SpeedupTheorem
(GST)

James Oswald & Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAI2
Sep 24 2023

RA I R

Rensselaer Al and Reasoning Lab

OXFORD

UNIVERSITY PRESS




Godel’s SpeedupTheorem
(GST)

James Oswald & Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)

. . Troy, New York 12180 USA
Note: Thisis a version 4

designed for those who have IFLAI2
had at least one serious, Sep 24 2023

proof-intensive university-

level course in formal logic.
Rensselaer Al and Reasoning Lab

OXTFORD

UNIVERSITY PRESS

)
V7



Background Context ...



Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!




STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!



http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

\/ ® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!



http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

<

® Brief Preliminaries (e.g. the

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness

® The Speedup Theorem
® The Continuum-Hypothesis

® The Time-Travel Theorem

® Godel’s “God Theorem”

® Could a Finite Machine Match

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

propositional calculus & FOL)

Theorem

Theorem

Godel’s Greatness!?



http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

Godel’s Great Theorems (oup)

STOP & REVIEW [F NEEDED!

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem
The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

The Continuum-Hypothesis
Theorem

The Time-Travel Theorem
Godel’s “God Theorem”

Could a Finite Machine Match
Godel’s Greatness!



http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

L S

Godel’s Great Theorems (oup)

STOP & REVIEW [F NEEDED!

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem
The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

The Continuum-Hypothesis
Theorem

The Time-Travel Theorem
Godel’s “God Theorem”

Could a Finite Machine Match
Godel’s Greatness!



http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

L S N

Godel’s Great Theorems (oup)

STOP & REVIEW [F NEEDED!

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem
The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

The Continuum-Hypothesis
Theorem

The Time-Travel Theorem
Godel’s “God Theorem”

Could a Finite Machine Match
Godel’s Greatness!



http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

* L S N

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem

® The First Incompleteness Theorem

® The Second Incompleteness

Theorem
® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

Switching to more expressive logics can produce a level of speedup beyond the reaching of standard computation.


http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem

The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

...

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

Switching to more expressive logics can produce a level of speedup beyond the reaching of standard computation.
By far the greatest of GGT; Selm’s analysis based Sherlock Holmes’ mystery “Silver Blaze.”


http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

Ascending Acceleration



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

Ackermann
Function



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM ﬁ:
i




Climbing Again the k-order Ladder



Climbing Again the k-order Ladder

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

Llama(a) N\ Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

dz|Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

drdydR[R(x) A R(y) A Likes(z,y) N R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

Jz,y AR, R*[R(x) A R(y) A R*(x,y) A Positive(R?) A R(fatherOf (z))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

TOL 3z,y 3R, R?[R(x) A R(y) A R*(z,y) A Positive(R?) A R(fatherOf (x))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

TOL 3z,y 3R, R?[R(x) A R(y) A R*(z,y) A Positive(R?) A R(fatherOf (x))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



Climbing Again the k-order Ladder

TOL 3z,y 3R, R?[R(x) A R(y) A R*(z,y) A Positive(R?) A R(fatherOf (x))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL  dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.



The Universe of Logics

o DCEC 2 = first-order logic

£y = zeroth-order logic




The Universe of Logics

o DCEC 2 = first-order logic

£y = zeroth-order logic




The Universe of Logics

o DCEC 2 = first-order logic

£y = zeroth-order logic




Climbing the k-order Ladder

Jz,y AR, R*[R(x) A R(y) A R*(x,y) A Positive(R?) A R(fatherOf (z))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

drdydR[R(x) A R(y) A Likes(z,y) N R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

dz|Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

Llama(a) N\ Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.






Godel’s Speedup Theorem



Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.



Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Then there is an infinite family F of I1Y formulae such that:



Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Then there is an infinite family F of I1Y formulae such that:

1. Ve eF, 7t ¢ and
2. V¢ € F,if k is the least integer s.t. Z; ;1 F* symbols 4 then 7, f (k) symbols



Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Then there is an infinite family F of I1Y formulae such that:

1. Ve eF, 7t ¢ and
2. V¢ € F,if k is the least integer s.t. Z; ;1 F* symbols 4 then 7, f (k) symbols



Ascending Acceleration



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

Ackermann
Function



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)



Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM




Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

Primitive Recursion: h(x,0) = f(x); h(x,y") = g(x,y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM ﬁ:
i




The Received View in Al

Expressiveness and tractability in knowledge representation and reasoning

HECTOR J. LEVESQUE®

Department of Computer Science, University of Toronto, Teronto, Ont., Canada MSS 1A4

AND

RONALD J. BRACHMAN
AT&T Bell Laboratories. 600 Mountain Avenue, 3C+439, Murray Hill, NJ 07974, U.S.A.
’ Received November 3. 1986
Revision accepted April 8, 1987

A fund: | I limit on I reasoning and its effect on knowledge representation is examined.
Basically, the problem i is that it can be more difficult to reason correctly with one representational I.m\.u.:!.c than with another
and. morcover, that this difficulty increases dr.nm.mull\ .n the expressive power of the l.:m.u increases. This leads to a
tradeol between the expressiveness of a repre and its comy I tr y. Here we shuw lh:l this
tradeotl can be seen to underlie the differences among a number of existing I formali in 0
motivating many of the current research issues in knowledge representation.

Key words: knowledge reg description sub: plexity of
networks, databases.

2. first-order logic, frames, semantic

Cet arnticle étudic une limitati putati lle fond le du rai ique et ses effets sur la
ion de i A la base le probléme tient en ce qu'il peut étre plus difficile de raisonner avec un langage de
représentation qu'avec un autre et que cette durﬁcullé augmente considérablement 3 mesure que croit le pouvmr expn:ss:{du

langage. Ceci donne lieu 3 un compromis entre le pouvoir expressif d'un langage de repré etsa

Nous que ce p
entre nombre de f li de
connaissances.

P

ité du

i s peut élre vu comme |'une dcs causes fondamcnmlcs de la différence qui cxlsu:
et peut motiver plusi en

de

P

Mots clés : rep ion de i |
é i bases de d

Comput. Intell. 3, 7893 (1987)

1. Introduction

This paper cxamines from a general point of view a basic
computational limit on automated reasoning, and the effect that
ithas on knowledge representation (KR). The problem is essen-
tially that it can be more difficult to reason correctly with one
representational language than with another and, moreover,
that this difficulty increases as the expressive power of the
language increases. There is a tradeoff between the expressive-
ness of a representational | and its computational trac-
sakility. What we attempt to show is that this tradeoff underlie:

logique du premier ordre, schémas, réseaux

[Traduit par la revue]

faults, as well as systems of limited inference and hybrid
reasoning).

To deal with such a broad range of representational phenom-
ena we must, of necessity, take a considerably simplified and
incomplete view of KR. In particular, we focus on its com-
putational and logical aspects, more or less ignoring its history
and relevance in the areas of psychology, linguistics, and phi-
losophy. The area of KR is still very disconnected today and
the rola of logic remains quite controversial, despite what this
paper may suggm We do believe, however, that the tradeoff

differences among a number of representational formalis
(such as first-order logic, databases, semantic networks, and
frames) and motivates many current research issues in KR
(such as the role of analogues, syntactic encodings, and de-

" This is a revised and substantially augmented version of * A Fun-
damental Tradeoff in Knowledge Rep and R " by
Hector J. Levesque, which app d in the Pr 2! uf the

Canadian Society for Computational Studies of Intelligence Confer-
ence, London, Ontario, May 1984. It includes portions of two other
conference papers: “The Tractability of Subsumption in Frame-Based
Description Languages.™ by Ronald J. Brachman and Hector J.
Levesque, which appeared in the Proceedings of the American Asso-
ciation for Artificial Intelligence Conference, Austin, Texas, August
1984; and “What Makes a Knowledge Base Knowledgeable? A View
of Databases from the Knowledge Level.” by the same authors, which
appeared in the Proceedings of the First Intemational Workshop on
Expert Database Systems, Kiawah Island, South Carolina, October
1984, Much of this paper appeared as a chapter in Readings in Knowl-
edge Representation (Morgan Kaufmann Publishers Inc., 1985),
cedited by the authors.
*Fellow of the Canadian Institute for Advanced Research.

d here is fund 1. As long as we are dealing with
computational systems that reason automatically (without any
special intervention or advice) and correctly (once we define
what that means), we will be able to locate where they stand on
the tradeofT: They will either be limited in what knowledge they
can represent or unlimited in the reasoning effort they might
require.

Our computational focus will not lead us to investigate
specific algorithms and data structures for KR and reason-
ing, however. What we discuss is something much stronger,
namely, whether or not algorithms of a certain kind can exist
at all. The analysis here is at the knowledge level (Newell 1981)
where we look at the content of what is represented (in terms
of what it says about the world) and not the symbolic structures
used to represent that knowledge. Indeed, we examine specific
representation schemes in terms of what knowledge they can
represent, rather than in terms of how they might actually
represent it.

In the next section, we discuss what a KR system is for and
what it could mean to reason correctly. Next, we investigate
how a KR service might be realized using theorem proving in




The Received View in Al

Expressiveness and tractability in knowledge representation and reasoning' I 987

HECTOR J. LEVESQUE®
Department of Computer Science, University of Toronto, Teronto, Ont., Canada MSS 1A4
AND

RONALD J. BRACHMAN
AT&T Bell Laboratories. 600 Mountain Avenue, 3C+439, Murray Hill, NJ 07974, U.S.A.
’ Received November 3. 1986
Revision accepted April 8, 1987

A fund: | ional limit on I reasoning and its effect on knowledge representation is examined.
Basically, the problem i is that it can be more difficult to reason correctly with one representational I.m\.u.:!.c than with another
and. morcover, that this difficulty increases dr.nm.mull\ .n the expressive power of the l.:m.u increases. This leads to a
tradeol between the expressiveness of a repre and its comy I tr y. Here we shuw lh:l this
tradeotl can be seen to underlie the differences among a number of existing rep ional formali in 0
motivating many of the current research issues in knowledge representation.

Key words: knowledge reg description sub: plexity of ing. first-order logic, frames. semantic
networks, databases.

Cet arnticle étudic une limitati putati lle fond le du rai ique et ses effets sur la
ion de i A la base le probléme tient en ce qu'il peut étre plus difficile de raisonner avec un langage de
représentation qu'avec un autre et que cette durﬁcullé augmente considérablement 3 mesure que croit le pouvmr expn:ss:{du

langage. Ceci donne lieu 3 un compromis entre le pouvoir expressif d'un langage de repré etsa

Nous que ce p
entre nombre de f li de
connaissances.

P

i s peut élre vu comme |'une dcs causes fondamcnmlcs de la différence qui cxlsu:
et peut motiver plusi en

de

P

Mots clés : rep ion de i lexité du

bases de d

Comput. Intell. 3, 7893 (1987)

1. Introduction

This paper cxamines from a general point of view a basic
computational limit on automated reasoning, and the effect that
ithas on knowledge representation (KR). The problem is essen-
tially that it can be more difficult to reason correctly with one
representational language than with another and, moreover,
that this difficulty increases as the expressive power of the
language increases. There is a tradeoff between the expressive-
ness of a representational | and its computational trac-
sakility. What we attempt to show is that this tradeoff underlie:

logique du premier ordre, schémas, réseaux

[Traduit par la revue]

faults, as well as systems of limited inference and hybrid
reasoning).

To deal with such a broad range of representational phenom-
ena we must, of necessity, take a considerably simplified and
incomplete view of KR. In particular, we focus on its com-
putational and logical aspects, more or less ignoring its history
and relevance in the areas of psychology, linguistics, and phi-
losophy. The area of KR is still very disconnected today and
the rola of logic remains quite controversial, despite what this
paper may suggm We do believe, however, that the tradeoff

differences among a number of representational formalis

(such as first-order logic, databases, semantic networks, and
frames) and motivates many current research issues in KR
(such as the role of analogues, syntactic encodings, and de-

" This is a revised and substantially augmented version of * A Fun-
damental Tradeoff in Knowledge Rep and R " by
Hector J. Levesque, which app d in the Pr ding: uf the
Canadian Society for Computational Studies of Intelligence Confer-
ence, London, Ontario, May 1984. It includes portions of two other
conference papers: “The Tractability of Subsumption in Frame-Based
Description Languages.™ by Ronald J. Brachman and Hector J.
Levesque, which appeared in the Proceedings of the American Asso-
ciation for Artificial Intelligence Conference, Austin, Texas, August
1984; and “What Makes a Knowledge Base Knowledgeable? A View
of Databases from the Knowledge Level.” by the same authors, which
appeared in the Proceedings of the First Intemational Workshop on
Expert Database Systems, Kiawah Island, South Carolina, October
1984, Much of this paper appeared as a chapter in Readings in Knowl-
edge Representation (Morgan Kaufmann Publishers Inc., 1985),
cedited by the authors.

*Fellow of the Canadian Institute for Advanced Research.

d here is fund 1. As long as we are dealing with
computational systems that reason automatically (without any
special intervention or advice) and correctly (once we define
what that means), we will be able to locate where they stand on
the tradeofT: They will either be limited in what knowledge they
can represent or unlimited in the reasoning effort they might
require.

Our computational focus will not lead us to investigate
specific algorithms and data structures for KR and reason-
ing, however. What we discuss is something much stronger,
namely, whether or not algorithms of a certain kind can exist
at all. The analysis here is at the knowledge level (Newell 1981)
where we look at the content of what is represented (in terms
of what it says about the world) and not the symbolic structures
used to represent that knowledge. Indeed, we examine specific
representation schemes in terms of what knowledge they can
represent, rather than in terms of how they might actually
represent it.

In the next section, we discuss what a KR system is for and
what it could mean to reason correctly. Next, we investigate
how a KR service might be realized using theorem proving in




The Received View in Al

Expressiveness and tractability in knowledge representation and reasoning' I 987

HECTOR J. LEVESQUE®
Department of Computer Science, University of Toronto, Teronto, Ont., Canada MSS 1A4
AND

RONALD J. BRACHMAN
AT&T Bell Laboratories. 600 Mountain Avenue, 3C+439, Murray Hill, NJ 07974, U.S.A.
’ Received November 3. 1986
Revision accepted April 8, 1987

A fund: | ional limit on I reasoning and its effect on knowledge representation is examined.
Basically, the problem i is that it can be more difficult to reason correctly with one representational I.m\.u.:!.c than with another
and. morcover, that this difficulty increases dr.nm.mull\ .n the expressive power of the l.:m.u increases. This leads to a
tradeol between the expressiveness of a repre and its comy I tr y. Here we shuw lh:l this
tradeotl can be seen to underlie the differences among a number of existing rep ional formali in 0
motivating many of the current research issues in knowledge representation.

Key words: knowledge reg description sub: plexity of ing. first-order logic, frames. semantic
networks, databases.

Cet arnticle étudic une limitati putati lle fond le du rai ique et ses effets sur la
ion de i A la base le probléme tient en ce qu'il peut étre plus difficile de raisonner avec un langage de
représentation qu'avec un autre et que cette durﬁcullé augmente considérablement 3 mesure que croit le pouvmr expn:ss:{du

langage. Ceci donne lieu 3 un compromis entre le pouvoir expressif d'un langage de repré etsa

Nous que ce p
entre nombre de f li de
connaissances.

P

i s peut élre vu comme |'une dcs causes fondamcnmlcs de la différence qui cxlsu:
et peut motiver plusi en

de

P

Mots clés : rep ion de i lexité du

bases de d

Comput. Intell. 3, 7893 (1987)

1. Introduction

This paper cxamines from a general point of view a basic
computational limit on automated reasoning, and the effect that
ithas on knowledge representation (KR). The problem is essen-
tially that it can be more difficult to reason correctly with one
representational language than with another and, moreover,
that this difficulty increases as the expressive power of the
language increases. There is a tradeoff between the expressive-
ness of a representational | and its computational trac-
sakility. What we attempt to show is that this tradeoff underlie:

logique du premier ordre, schémas, réseaux

[Traduit par la revue]

faults, as well as systems of limited inference and hybrid
reasoning).

To deal with such a broad range of representational phenom-
ena we must, of necessity, take a considerably simplified and
incomplete view of KR. In particular, we focus on its com-
putational and logical aspects, more or less ignoring its history
and relevance in the areas of psychology, linguistics, and phi-
losophy. The area of KR is still very disconnected today and
the rola of logic remains quite controversial, despite what this
paper may suggm We do believe, however, that the tradeoff

differences among a number of representational formalis

(such as first-order logic, databases, semantic networks, and
frames) and motivates many current research issues in KR
(such as the role of analogues, syntactic encodings, and de-

" This is a revised and substantially augmented version of * A Fun-
damental Tradeoff in Knowledge Rep and R " by
Hector J. Levesque, which app d in the Pr ding: uf the
Canadian Society for Computational Studies of Intelligence Confer-
ence, London, Ontario, May 1984. It includes portions of two other
conference papers: “The Tractability of Subsumption in Frame-Based
Description Languages.™ by Ronald J. Brachman and Hector J.
Levesque, which appeared in the Proceedings of the American Asso-
ciation for Artificial Intelligence Conference, Austin, Texas, August
1984; and “What Makes a Knowledge Base Knowledgeable? A View
of Databases from the Knowledge Level.” by the same authors, which
appeared in the Proceedings of the First Intemational Workshop on
Expert Database Systems, Kiawah Island, South Carolina, October
1984, Much of this paper appeared as a chapter in Readings in Knowl-
edge Representation (Morgan Kaufmann Publishers Inc., 1985),
cedited by the authors.

*Fellow of the Canadian Institute for Advanced Research.

d here is fund 1. As long as we are dealing with
computational systems that reason automatically (without any
special intervention or advice) and correctly (once we define
what that means), we will be able to locate where they stand on
the tradeofT: They will either be limited in what knowledge they
can represent or unlimited in the reasoning effort they might
require.

Our computational focus will not lead us to investigate
specific algorithms and data structures for KR and reason-
ing, however. What we discuss is something much stronger,
namely, whether or not algorithms of a certain kind can exist
at all. The analysis here is at the knowledge level (Newell 1981)
where we look at the content of what is represented (in terms
of what it says about the world) and not the symbolic structures
used to represent that knowledge. Indeed, we examine specific
representation schemes in terms of what knowledge they can
represent, rather than in terms of how they might actually
represent it.

In the next section, we discuss what a KR system is for and
what it could mean to reason correctly. Next, we investigate
how a KR service might be realized using theorem proving in




The Received View in Al
§ 1987

GST
1936

Tractability



The Received View in Al
§ 1987

GST
1936

Tractability



The Received View in Al
§ 1987

GST
1936

Tractability



GST
1936

The Received View in Al

1987

Tractability



The Received View in Al
§ 1987

GST
1936

Tractability



The Received View in Al
§ 1987

GST
1936

Expressivity . 7

Tractability



The Received View in Al
‘E, 1987

GST
1936

Expressivity . 7

Tractability

Bringsjord: Speedup shoots
this down, & hence to ignore
automated reasoning in highly
expressive formats would be
foolish for Al



A Simpler “Speedup” Theorem



A Simpler “Speedup” Theorem

Let f be any recursive function, and again let us
refer to @ D PA. Then there are arithmetic &£
sentences @ st. @ F @, where the shortest proof P
confirming this has more more than f(n? symbols.



To prove GST, we shall once
again allow ourselves ...



Again: The Fixed Point Theorem (FPT)

Assume that @ is a set of arithmetic sentences such
that Repr @. There for every arithmetic formula y(x)
with one free variable x, there Is an arithmetic
sentence ¢ s.t.

D+ ¢ wn?.

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”



Ok;soletsdo it ...



Proof. Let /* be an arbitrary (total) recursive function. We can clearly
define a meta-logical relation that expresses the property of having a proof
in @ of ¢ shorter; symbol-wise, than f(n?), for the Gédel number of any
formula ¢. Let us abbreviate this relation as: Prov-she(¢, n?). By Repr @,
since a Turing machine can compute this relation, we then have:

(Rep*) = (1) Prov-she(n?) iff ® - ¢.

Next, we can instantiate the Fixed Point Theorem to yield a formula that
declares “There’s no proof of me shorter than what f* applied to me
returns!” (And note that we employ a logicization of our meta-logical
relation.). More formally, the instantiation will be:

(FPT*) = (2) @ F 7, & ~P-she(n™)

Now what about this self-referential sentence! Can it have a proof
shorter than f* applied to its Godel number? Suppose for contradiction
that it does. Then by left-to-right on (1) it's provable in ®. But given this,
combined with (2), this self-referential sentence is not provable by a
derivation shorter than f* applied to it — contradiction! QED






Med nok penger, kan
logikk lese alle problemer.



