Gödel's

Second Incompleteness Theorem (G2)

Selmer Bringsjord

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/2I/2023

Gödel's

Second Incompleteness Theorem (G2)

Selmer Bringsjord

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/2I/2023

Gödel's

Second Incompleteness Theorem (G2)

Selmer Bringsjord

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/2I/2023

Gödel's

Second Incompleteness Theorem (G2)

Selmer Bringsjord

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/2I/2023

Gödel's

Second Incompleteness Theorem (G2)

Selmer Bringsjord

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/21/2023
Note: This is a version designed for those who have had at least one universitylevel course in formal logic with coverage through \mathscr{L}_{1}.

Background Context ...

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

Gödel's Great Theorems (oup) by Selmer Bringsjord

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "GodTheorem"
- Could a Finite Machine Match Gödel's Greatness?

A corollary of the First Incompleteness Theorem: We cannot prove (in "classical" mathematics) that mathematics is consistent.

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

By far the greatest of GGT; Selm's analysis based Sherlock Holmes' mystery "Silver Blaze."

The "Gödelian" Liar (from me)

The "Gödelian" Liar (from me)

\bar{P} : This sentence is unprovable.

The "Gödelian" Liar

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

The "Gödelian" Liar

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

The "Gödelian" Liar (from me)

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

$$
\mathrm{T}(\bar{P}) \text { iff (i.e., if \& only if) } \neg \mathrm{T}(\bar{P})=\mathrm{F}(\bar{P})
$$

The "Gödelian" Liar (from me)

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

$$
\mathrm{T}(\bar{P}) \text { iff (i.e., if \& only if) } \neg \mathrm{T}(\bar{P})=\mathrm{F}(\bar{P})
$$

Contradiction!

The "Gödelian" Liar friom me)

 \bar{P} : This sentence is unprovable. $\overline{\bar{\pi}}=$ "'l'm unterSuppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

$$
\mathrm{T}(\bar{P}) \text { iff (i.e., if \& only if) } \neg \mathrm{T}(\bar{P})=\mathrm{F}(\bar{P})
$$

Contradiction!

All of this is fishy; but Gödel, as we've seen, transformed it (by e.g. use of his encryption scheme) into utterly precise, impactful, indisputable reasoning ...

PA (Peano Arithmetic):

$$
\begin{array}{ll}
\text { A1 } & \forall x(0 \neq s(x)) \\
\text { A2 } & \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
\text { A3 } & \forall x(x \neq 0 \rightarrow \exists y(x=s(y)) \\
\text { A4 } & \forall x(x+0=x) \\
\text { A5 } & \forall x \forall y(x+s(y)=s(x+y)) \\
\text { A6 } & \forall x(x \times 0=0) \\
\text { A7 } & \forall x \forall y(x \times s(y)=(x \times y)+x)
\end{array}
$$

And, every sentence that is the universal closure of an instance of

$$
([\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x \phi(x))
$$

where $\phi(x)$ is open wff with variable x, and perhaps others, free.

Is there buried inconsistency in here?!?

Courtesy of Gödel: Given certain limitative assumptions about "proof power," we can't prove that there isn't!

Is there buried inconsistency in here?!?

Courtesy of Gödel: Given certain limitative assumptions about "proof power," we can't prove that there isn't!

Is there buried inconsistency in here?!?

Courtesy of Gödel: Given certain limitative assumptions about "proof power," we can't prove that there isn't!

Is there buried inconsistency in here?!?
Courtesy of Gödel: Given certain limitative assumptions about "proof power," we can't prove that there isn't!

Is there buried inconsistency in here?!?
Courtesy of Gödel: Given certain limitative assumptions about "proof power," we can't prove that there isn't!

G2 as Slogan ...

G2 as Slogan ...

"We can't use math to ascertain
whether mathematics is consistent.'

G2 as Slogan ...

G2 as Slogan ...

"If we are restricted to certain kinds of formal reasoning, and feel we must have all of PA (math, engineering, etc.), we can't ascertain whether mathematics is consistent.''

Gödel's Second Incompleteness Theorem

Gödel's Second Incompleteness Theorem

Suppose $\Phi \supset \mathbf{P A}$ that is
(i) Con Φ;
(ii) Turing-decidable (i.e. membership in Φ is

Turing-decidable); and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then $\Phi \nvdash$ consis $_{\Phi}$.

Gödel's Second Incompleteness Theorem

Suppose $\Phi \supset \mathbf{P A}$ that is

Remember Church's Theorem!

(i) Con Φ;
(ii) Turing-decidable (i.e. membership in Φ is

Turing-decidable); and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then $\Phi \nvdash$ consis $_{\Phi}$.

Gödel's Second Incompleteness Theorem

Suppose $\Phi \supset \mathbf{P A}$ that is

Remember Church's Theorem!

(i) Con Φ;
(ii) Turing-decidable (i.e. membership in Φ is Turing-decidable); and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then $\Phi \nvdash$ consis $_{\Phi}$.

To prove G2, we shall once again allow ourselves ...

The Fixed Point Theorem (FPT)

Assume that Φ is a set of arithmetic sentences such that $\operatorname{Repr} \boldsymbol{\Phi}$. There for every arithmetic formula $\psi(x)$ with one free variable x, there is an arithmetic sentence ϕ s.t.
$\Phi \vdash \phi \leftrightarrow \psi\left(\hat{n}^{\phi}\right)$.
We can intuitively understand ϕ to be saying:
"I have the property ascribed to me by the formula ψ.'"

FPT in HyperSlate ${ }^{\circledR!}$

Ok; so let's do it ... and let's see if you can see why Gödel declared G2 to be a direct "corollary" of GI, and didn't bother to prove it in his original paper ...

Proof: Suppose that the antecedent (i)-(iii) of $\mathbf{G} \mathbf{2}$ holds. Suppose for reductio that
$\Phi \vdash$ consis $_{\Phi}$.
We need three ingredients, and we shall be done. First, from FPT we can again directly obtain:

$$
\text { (*) } \Phi \vdash \mathscr{G} \leftrightarrow \neg \mathscr{P}_{\Phi}\left(\hat{n}^{\mathscr{G}}\right) .
$$

Next, we can prove (how? ... from one half of $\mathbf{G} \mathbf{I}$!) that:
(7.9) If Con Φ, then $\Phi \nvdash \mathscr{G}$.

Thirdly, we can logicize the meta-logical proposition that Φ is consistent as an object-level conditional which can itself be proved formally from Φ :

$$
\text { (**) } \Phi \vdash \operatorname{consis}_{\Phi} \rightarrow \neg \mathscr{P}_{\Phi}\left(\hat{n}^{\mathscr{G}}\right) .
$$

Contradiction! (Can you find it?) QED

Med nok penger, kan logikk løse alle problemer.

