Gödel's ... First Incompleteness Theorem (GI)

Selmer Bringsjord*

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/I8/2023 (ver 0918231358)

Gödel's ... First Incompleteness Theorem (GI)

Selmer Bringsjord*

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/I8/2023 (ver 0918231358)

Gödel's ... First Incompleteness Theorem (GI)

Selmer Bringsjord*

Rensselaer AI \& Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/I8/2023 (ver 0918231358)

Gödel's ... First Incompleteness Theorem (GI)

Selmer Bringsjord*

Rensselaer AI \& Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
9/I8/2023 (ver 0918231358)

Gödel's ...
 First Incompleteness Theorem (GI)

Selmer Bringsjord*

Rensselaer AI \& Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA
Note: This is a version designed for those who have had at least one robust, proof-intensive university-level course in formal logic to the level of \mathscr{L}_{2}.

9/I8/2023 (ver 0918231358)

Rensselaer AI and Reasoning Lab

Background Context ...

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

Gödel's Great Theorems (oup) by Selmer Bringsjord

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

A corollary of the First Incompleteness Theorem: We cannot prove (in classical mathematics) that mathematics is consistent.

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

By far the greatest of GGT; Selm's analysis based Sherlock Holmes' mystery "Silver Blaze."

Deficient; Beware

Deficient; Beware

Deficient; Beware

Deficient; Beware

Deficient; Beware

Some Timeline Points

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered;Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna

1906 Brünn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered;Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna

1906 Brünn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered;Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna
1906 Brünn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered;Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna
1906 Brünn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered;Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna
1906 Brünn,Austria-Hungary

Some Timeline Points

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered;Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem
1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna

1906 Brünn,Austria-Hungary

The "Liar Tree"

The "Liar Tree"

The Liar Paradox

The "Liar Tree"

The Liar Paradox

The "Liar Tree"

The Liar Paradox

Pure Proof-Theoretic Route

The "Liar Tree"

The Liar Paradox

Pure Proof-Theoretic Route

The "Liar Tree"

The Liar Paradox

The "Liar Tree"

The "Liar Tree"

"The Book"

The "Liar Tree"

Ergo, step one: What is LP?

"The (Economical) Liar"

"The (Economical) Liar"

\mathbf{L} : This sentence is false.

"The (Economical) Liar"

\mathbf{L} : This sentence is false.

Suppose that $T(\mathbf{L})$; then $\neg T(\mathbf{L})$.

"The (Economical) Liar"

\mathbf{L} : This sentence is false.

Suppose that $T(\mathbf{L})$; then $\neg T(\mathbf{L})$.
Suppose that $\neg \mathbf{T}(\mathbf{L})$ then $T(\mathbf{L})$.

"The (Economical) Liar"

\mathbf{L} : This sentence is false.
Suppose that $T(\mathbf{L})$; then $\neg T(\mathbf{L})$.
Suppose that $\neg \mathbf{T}(\mathbf{L})$ then $T(\mathbf{L})$.
Hence: $T(L)$ iff (i.e., if \& only if) $\neg T(L)$.

"The (Economical) Liar"

L: This sentence is false.
Suppose that $T(\mathbf{L})$; then $\neg T(\mathbf{L})$.
Suppose that $\neg \mathbf{T}(\mathbf{L})$ then $T(\mathbf{L})$.
Hence: $T(L)$ iff (i.e., if \& only if) $\neg T(L)$.
Contradiction!

The "Gödelian" Liar (from me)

The "Gödelian" Liar (from me)

\bar{P} : This sentence is unprovable.

The "Gödelian" Liar

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

The "Gödelian" Liar

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

The "Gödelian" Liar (from me)

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

$$
\mathrm{T}(\bar{P}) \text { iff (i.e., if \& only if) } \neg \mathrm{T}(\bar{P})=\mathrm{F}(\bar{P})
$$

The "Gödelian" Liar (from me)

\bar{P} : This sentence is unprovable.

Suppose that \bar{P} is true. Then we can immediately deduce that \bar{P} is provable, because here is a proof: $\bar{P} \rightarrow \bar{P}$ is an easy theorem, and from it and our supposition we deduce \bar{P} by modus ponens. But since what \bar{P} says is that it's unprovable, we have deduced that \bar{P} is false under our initial supposition.

Suppose on the other hand that \bar{P} is false. Then we can immediately deduce that \bar{P} is unprovable: Suppose for reductio that \bar{P} is provable; then \bar{P} holds as a result of some proof, but what \bar{P} says is that it's unprovable; and so we have contradiction. But since what \bar{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \bar{P} is true.

$$
\mathrm{T}(\bar{P}) \text { iff (i.e., if \& only if) } \neg \mathrm{T}(\bar{P})=\mathrm{F}(\bar{P})
$$

Contradiction!

All of this is fishy; but Gödel transformed it into utterly precise, impactful, indisputable reasoning ...

PA (Peano Arithmetic):

$$
\begin{array}{ll}
\text { A1 } & \forall x(0 \neq s(x)) \\
\text { A2 } & \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
\text { A3 } & \forall x(x \neq 0 \rightarrow \exists y(x=s(y)) \\
\text { A4 } & \forall x(x+0=x) \\
\text { A5 } & \forall x \forall y(x+s(y)=s(x+y)) \\
\text { A6 } & \forall x(x \times 0=0) \\
\text { A7 } & \forall x \forall y(x \times s(y)=(x \times y)+x)
\end{array}
$$

And, every sentence that is the universal closure of an instance of

$$
([\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x \phi(x))
$$

where $\phi(x)$ is open wff with variable x, and perhaps others, free.

Arithmetic Crucial Part of All Things Sci/Eng/Tech!

 but alas, courtesy of Gödel: An infinite number of arithmetic propositions impossible to settle/decide.
Arithmetic Crucial Part of All Things Sci/Eng/Tech!

 but alas, courtesy of Gödel: An infinite number of arithmetic propositions impossible to settle/decide.

Arithmetic Crucial Part of All Things Sci/Eng/Tech!

 but alas, courtesy of Gödel: An infinite number of arithmetic propositions impossible to settle/decide.

Arithmetic Crucial Part of All Things Sci/Eng/Tech!

 but alas, courtesy of Gödel: An infinite number of arithmetic propositions impossible to settle/decide.

Each circle is a larger part of the formal sciences.

Arithmetic Crucial Part of All Things Sci/Eng/Tech!

 but alas, courtesy of Gödel: An infinite number of arithmetic propositions impossible to settle/decide.

Gödel Numbering

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
in the language of \mathscr{L}_{1}

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
Gödel number in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
Gödel number in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

Object-level objects
Gödel number in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

ϕ
$\phi \rightarrow \psi$
$f(x, a)$

Object-level objects
 in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!
ϕ
$\phi \rightarrow \psi$
$f(x, a)$

Object-level objects

in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)
ϕ

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!
ϕ
$\phi \rightarrow \psi$
$f(x, a)$

Object-level objects in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel numeral

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!
ϕ
$\phi \rightarrow \psi$
$f(x, a)$

Object-level objects in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel number
Gödel numeral

$$
\left.\hat{n}^{\phi} \text { (or just" }{ }^{6}{ }^{\prime \prime}\right)
$$

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!
ϕ
$\phi \rightarrow \psi$
$f(x, a)$

Object-level objects in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

323	$1+\ldots+1+0$
23432	$1+\ldots+1+0$
142323	$1+\ldots+1+0$

Gödel number

Gödel numeral

Gödel Numbering

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

ϕ
$\phi \rightarrow \psi$
$f(x, a)$

Object-level objects $\xrightarrow{ }$

| 323 |
| :---: | :---: |
| 23432 |
| 142323 |\quad| $1+\ldots+1+0$ |
| :---: | :---: |
| $1+\ldots+1+0$ |
| $1+\ldots+1+0$ |

Gödel number
Gödel numeral in the language of \mathscr{L}_{1}
(formulae, terms, proofs etc)

Gödel Numbering, the Easy Way

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from I, to 2 , to ...

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from I, to 2 , to ...

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from I, to 2 , to ...

So, gimcrack is named by some positive integer k. Hence, I can just refer to this word as " k " Or in the notation I prefer: $k^{\text {gimcrack }}$.

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from I , to 2 , to ...

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from I , to 2 , to ...

Or, every syntactically valid computer program in Clojure that you will ever write can be uniquely denoted by some number m in the lexicographic ordering of all syntactically valid such programs. So your program π can just be coded as a numeral m^{π} in a formal language that captures arithmetic (i.e., an arithmetic language).

Gödel's First Incompleteness Theorem

Let Φ be a set of arithmetic sentences that is
(i) consistent (i.e. no contradiction $\phi \wedge \neg \phi$ can be deduced from Φ);
(ii) s.t. an algorithm is available to decide whether or not a given string u is a member of Φ; and
(iii) sufficiently expressive to capture all of the operations of a standard computing machine (e.g. a Turing machine, register machine, KU machine, etc.).

Then there is an "undecidable" arithmetic sentence \mathscr{G} from Gödel that can't be proved from Φ, nor can the negation of this sentence (i.e. $\neg \mathscr{G}$) be proved from Φ !

Alas, that's painfully verbose.

Gödel's First Incompleteness Theorem

Gödel's First Incompleteness Theorem

Suppose $\Phi \supset \mathbf{P A}(=\Phi$ contains $\mathbf{P A})$ that is
(i) Con Φ;
(ii) Turing-decidable, and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then there is an arithmetic sentence \mathscr{G} s.t.
$\Phi \nvdash \mathscr{G}$ and $\Phi \nvdash \neg \mathscr{G}$.

Gödel's First Incompleteness Theorem

Suppose $\Phi \supset \mathbf{P A}(=\Phi$ contains $\mathbf{P A})$ that is
(i) Con Φ;
(ii) Turing-decidable, and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then there is an arithmetic sentence \mathscr{G} s.t.
$\Phi \nvdash \mathscr{G}$ and $\Phi \nvdash \neg \mathscr{G}$.

Gödel's First Incompleteness Theorem

Suppose $\Phi \supset \mathbf{P A}(=\Phi$ contains $\mathbf{P A})$ that is
(i) Con Φ;
(ii) Turing-decidable, and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then there is an arithmetic sentence \mathscr{G} s.t.
$\Phi \nvdash \mathscr{G}$ and $\Phi \nvdash \neg \mathscr{G}$.

To prove GI, we shall allow ourselves ...

The Fixed Point Theorem (FPT)

Assume that Φ is a set of arithmetic sentences such that $\operatorname{Repr} \Phi$. Then for every arithmetic formula $\psi(x)$ with one free variable x, there is an arithmetic sentence ϕ s.t.
$\Phi \vdash \phi \leftrightarrow \psi\left(\hat{n}^{\phi}\right)$.
We can intuitively understand ϕ to be saying:
"I have the property ascribed to me by the formula ψ.'"

"I thought there was no free lunch!"

[W]e "would hope that such a deep theorem would have an insightful proof. No such luck. I am going to write down a sentence ... and verify that it works. What I won't do is give you a satisfactory explanation for why I write down the particular formula that I do. I write down the formula because Gödel wrote down the formula, and Gödel wrote down the formula because, when he played the logic game he was able to see seven or eight moves ahead, whereas you and I are only able to see one or two moves ahead. I don't know anyone who thinks he has a fully satisfying understanding of why the Self-referential Lemma [= FPT] works. It has a rabbit-out-of-a-hat quality for everyone."
-V. McGee, 2002; as quoted in (Salehi 2020)

The Fixed Point Theorem (FPT)

Assume that Φ is a set of arithmetic sentences such that $\operatorname{Repr} \boldsymbol{\Phi}$. There for every arithmetic formula $\psi(x)$ with one free variable x, there is an arithmetic sentence ϕ s.t.
$\Phi \vdash \phi \leftrightarrow \psi\left(\hat{n}^{\phi}\right)$.
We can intuitively understand ϕ to be saying:
"I have the property ascribed to me by the formula ψ.'"

Ok; so let's do it ...

Proof: Let Φ be a set of arithmetic sentences, and suppose (for conditional intro) the antecedent of $\mathbf{G} \mathbf{I}$ holds, i.e. (i)-(iii) hold. We must show that neither \mathscr{G}, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, can be proved from $\boldsymbol{\Phi}$. We know, respectively, that for any theorem ϕ of Φ, and from an instantiation of FPT, that:

Proof: Let Φ be a set of arithmetic sentences, and suppose (for conditional intro) the antecedent of $\mathbf{G} \mathbf{I}$ holds, i.e. (i)-(iii) hold. We must show that neither \mathscr{G}, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, can be proved from Φ. We know, respectively, that for any theorem ϕ of Φ, and from an instantiation of FPT, that:

$$
(\text { Repr } *)=(I) \operatorname{Provable}\left(n^{\phi}\right) \text { if and only if } \Phi \vdash \phi .
$$

Proof: Let Φ be a set of arithmetic sentences, and suppose (for conditional intro) the antecedent of $\mathbf{G I}$ holds, i.e. (i)-(iii) hold. We must show that neither \mathscr{G}, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, can be proved from Φ. We know, respectively, that for any theorem ϕ of Φ, and from an instantiation of FPT, that:

$$
\begin{aligned}
& (\text { Repr } *)=(1) \operatorname{Provable}\left(n^{\phi}\right) \text { if and only if } \Phi \vdash \phi . \\
& \left(\mathrm{FPT}^{*}\right)=(2) \Phi \vdash \mathscr{G} \leftrightarrow \neg \mathscr{P}\left(\hat{n}^{\mathscr{G}}\right)
\end{aligned}
$$

Proof: Let Φ be a set of arithmetic sentences, and suppose (for conditional intro) the antecedent of $\mathbf{G} \mathbf{I}$ holds, i.e. (i)-(iii) hold. We must show that neither \mathscr{G}, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, can be proved from Φ. We know, respectively, that for any theorem ϕ of Φ, and from an instantiation of FPT, that:

$$
\begin{aligned}
& (\text { Repr } *)=(1) \text { Provable }\left(n^{\phi}\right) \text { if and only if } \Phi \vdash \phi . \\
& (\text { FPT* })=(2) \Phi \vdash \mathscr{G} \leftrightarrow \neg \neg \mathscr{P}\left(\hat{n}^{\mathscr{G}}\right)
\end{aligned}
$$

Proof: Let Φ be a set of arithmetic sentences, and suppose (for conditional intro) the antecedent of $\mathbf{G I}$ holds, i.e. (i)-(iii) hold. We must show that neither \mathscr{G}, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, can be proved from Φ. We know, respectively, that for any theorem ϕ of Φ, and from an instantiation of FPT, that:

$$
\begin{aligned}
& \left(\text { Repr }^{*}\right)=(1) \operatorname{Provable}\left(n^{\phi}\right) \text { if and only if } \Phi \vdash \phi . \\
& \left(\mathrm{FPT}^{*}\right)=(2) \Phi \vdash \mathscr{G} \stackrel{\neg \mathcal{P}\left(\hat{n}^{\mathscr{G}}\right) .}{ }
\end{aligned}
$$

Here, $\boldsymbol{\phi}$ is of course a variable in (I) for any formula; and \mathscr{T} is a logicization of Provable. Now suppose (for reductio) $\Phi \vdash \mathscr{G}$. By right-to-left on (I) we deduce Provable $\left(n^{\mathscr{G}}\right)$. We can logicize this as $\neg \neg \mathscr{P}\left(\hat{n}^{\mathscr{G}}\right)$. Then we have $\Phi \nvdash \mathscr{G}$, since otherwise a contradiction could be deduced. Contradiction! - and our supposition for reductio falls.

Proof: Let Φ be a set of arithmetic sentences, and suppose (for conditional intro) the antecedent of $\mathbf{G} \mathbf{I}$ holds, i.e. (i)-(iii) hold. We must show that neither \mathscr{G}, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, can be proved from Φ. We know, respectively, that for any theorem ϕ of Φ, and from an instantiation of FPT, that:

$$
\begin{aligned}
& \left(\text { Repr }^{*}\right)=(1) \operatorname{Provable~}\left(n^{\phi}\right) \text { if and only if } \Phi \vdash \phi . \\
& \left(\text { FPT*}^{*}\right)=(2) \Phi \vdash \mathscr{G} \leftrightarrow \rightarrow \neg \mathscr{P}\left(\hat{n}^{\mathscr{G}}\right) .
\end{aligned}
$$

Here, $\boldsymbol{\phi}$ is of course a variable in (I) for any formula; and \mathscr{T} is a logicization of Provable. Now suppose (for reductio) $\Phi \vdash \mathscr{G}$. By right-to-left on (I) we deduce Provable $\left(n^{\mathscr{G}}\right)$. We can logicize this as $\neg \neg \mathscr{P}\left(\hat{n}^{\mathscr{G}}\right)$. Then we have $\Phi \nvdash \mathscr{G}$, since otherwise a contradiction could be deduced. Contradiction! - and our supposition for reductio falls.
Suppose on the other hand $\Phi \vdash \neg \mathscr{G}$. And, suppose for reductio that
$\neg \operatorname{Provable}\left(n^{\mathscr{G}}\right)$. We can logicize this as $\neg \mathscr{P}\left(\hat{n}^{\mathscr{G}}\right)$, and then we can use (2) to deduce $\Phi \vdash \mathscr{G}$. But this entails Inc $\Phi=$ not-Con Φ. Yet our original assumptions (it's (i), specifically) include Con Φ, so: contradiction. Therefore (by negation elim) we have $\operatorname{Provable}\left(n^{\mathscr{G}}\right)$. But from this, left-to-right on (I), we have $\Phi \vdash \mathscr{G}$. But then we have that \mathscr{G} is both provable and not provable from Φ, which is a contradiction with (i) = Con Φ ! $\mathbf{Q E D}$

"Silly abstract nonsense! There aren't any concrete examples of $\mathscr{G}!$ "

Astrologic:
Rational Aliens Will be on the Same "Race Track"!

Astrologic:
Rational Aliens Will be on the Same "Race Track"!

Astrologic:
Rational Aliens Will be on the Same "Race Track"!

Ah, but e.g.: Goodstein's Theorem!

Ah, but e.g.: Goodstein's Theorem!

The Goodstein Sequence goes to zero!

Pure base n representation of a number r

- Represent r as only sum of powers of n in which the exponents are also powers of n, etc.
$266=2^{2^{\left(2^{2^{0}}+2^{0}\right)}}+2^{\left(2^{2^{0}}+2^{0}\right)}+2^{2^{0}}$

Grow Function

$\operatorname{Grow}_{k}(n)$:

1. Take the pure base k representation of n
2. Replace all k by $k+1$. Compute the number obtained.
3. Subtract one from the number

Example of Grow

$$
\begin{gathered}
\operatorname{Grow}_{2}(19) \\
19=2^{2^{2^{2^{0}}}}+2^{2^{0}}+2^{0} \\
3^{3^{3^{3^{0}}}}+3^{3^{0}}+3^{0} \\
3^{3^{3^{3^{0}}}}+3^{3^{0}}+3^{0}-1
\end{gathered}
$$

7625597484990

Goodstein Sequence

- For any natural number m
m
Grow $_{2}(m)$
Grow $_{3}\left(\operatorname{Grow}_{2}(m)\right)$
$\operatorname{Grow}_{4}\left(\operatorname{Grow}_{3}\left(\operatorname{Grow}_{2}(m)\right)\right)$,

Sample Values

Sample Values

Sample Values

Sample Values

Sample Values

Sample Values

Sample Values

This sequence actually goes to zero!

Astrologic:
Rational Aliens Will be on the Same "Race Track"!

Astrologic:
Rational Aliens Will be on the Same "Race Track"!

Astrologic:
Rational Aliens Will be on the Same "Race Track"!

Could an AI Ever Match Gödel's GI \& G2?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

Gödel's Great Theorems (OUP)

 by Selmer Bringsjord- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus \& FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis

Theorem

- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

Med nok penger, kan logikk løse alle problemer.

