Gödel: **ZFC** ⊬ ¬CH

(Gödel's "Silver Blaze" Theorem)

Part I & II: Further Context & Proof Sketch

Selmer Bringsjord

IFLAI2

Nov 20 & 27 2023

RPI

Troy NY USA

version 1120231244NY

Context ...

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Part I Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness
 Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Part I Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Part I Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

Article Talk Read Edit View history Search Wikipedia Q

Hilbert's problems

From Wikipedia, the free encyclopedia

Hilbert's problems are twenty-three problems in mathematics published by German mathematician David Hilbert in 1900. The problems were all unsolved at the time, and several of them were very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 in the Sorbonne. The complete list of 23 problems was published later, most notably in English translation in 1902 by Mary Frances Winston Newson in the *Bulletin of the American Mathematical Society*.^[1]

Contents [hide]

- 1 Nature and influence of the problems
- 2 Ignorabimus
- 3 The 24th problem
- 4 Sequels
- 5 Summary
- 6 Table of problems
- 7 See also
- 8 Notes
- 9 References
- 10 Further reading
- 11 External links

Gödel as logician/mathematican; Gödel as prophet.

Table of problems [edit]

Hilbert's twenty-three problems are (for details on the solutions and references, see the detailed articles that are linked to in the first column):

Problem \$	Brief explanation	Status +	Year Solved \$
1st	The continuum hypothesis (that is, there is no set whose cardinality is strictly between that of the integers and that of the real numbers)	Proven to be impossible to prove or disprove within Zermelo–Fraenkel set theory with or without the Axiom of Choice (provided Zermelo–Fraenkel set theory is consistent, i.e., it does not contain a contradiction). There is no consensus on whether this is a solution to the problem.	1940, 1963
2nd	Prove that the axioms of arithmetic are consistent.	There is no consensus on whether results of Gödel and Gentzen give a solution to the problem as stated by Hilbert. Gödel's second incompleteness theorem, proved in 1931, shows that no proof of its consistency can be carried out within arithmetic itself. Gentzen proved in 1936 that the consistency of arithmetic follows from the well-foundedness of the ordinal $\varepsilon_{\scriptscriptstyle 0}$.	1931, 1936
3rd	Given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces that can be reassembled to yield the second?		
4th	Construct all metrics where lines are geodesics.	Too vague to be stated resolved or not. ^[h]	
5th	Are continuous groups automatically differential groups?	Resolved by Andrew Gleason, assuming one interpretation of the original statement. If, however, it is understood as an equivalent of the Hilbert–Smith conjecture, it is still unsolved.	1953?
6th	Mathematical treatment of the axioms of physics (a) axiomatic treatment of probability with limit theorems for foundation of statistical physics (b) the rigorous theory of limiting processes "which lead from the atomistic view to the laws of motion of continua"	Partially resolved depending on how the original statement is interpreted. [9] Items (a) and (b) were two specific problems given by Hilbert in a later explanation. [1] Kolmogorov's axiomatics (1933) is now accepted as standard. There is some success on the way from the "atomistic view to the laws of motion of continua." [10]	1933– 2002?
7th	Is a^b transcendental, for algebraic $a \neq 0,1$ and irrational algebraic b ?	Resolved. Result: Yes, illustrated by Gelfond's theorem or the Gelfond– Schneider theorem.	1934

Gödel as logician/mathematican; Gödel as prophet.

Table of problems [edit]

Hilbert's twenty-three problems are (for details on the solutions and references, see the detailed articles that are linked to in the first column):

Problem \$	Brief explanation	Status +	Year Solved \$
1st	The continuum hypothesis (that is, there is no set whose cardinality is strictly between that of the integers and that of the real numbers)	Proven to be impossible to prove or disprove within Zermelo–Fraenkel set theory with or without the Axiom of Choice (provided Zermelo–Fraenkel set theory is consistent, i.e., it does not contain a contradiction). There is no consensus on whether this is a solution to the problem.	1940, 1963
2nd	Prove that the axioms of arithmetic are consistent.	There is no consensus on whether results of Gödel and Gentzen give a solution to the problem as stated by Hilbert. Gödel's second incompleteness theorem, proved in 1931, shows that no proof of its consistency can be carried out within arithmetic itself. Gentzen proved in 1936 that the consistency of arithmetic follows from the well-foundedness of the ordinal ε_0 .	1931, 1936
3rd	Given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces that can be reassembled to yield the second?		
4th	Construct all metrics where lines are geodesics.	Too vague to be stated resolved or not. ^[h]	
5th	Are continuous groups automatically differential groups?	Resolved by Andrew Gleason, assuming one interpretation of the original statement. If, however, it is understood as an equivalent of the Hilbert–Smith conjecture, it is still unsolved.	1953?
6th	Mathematical treatment of the axioms of physics (a) axiomatic treatment of probability with limit theorems for foundation of statistical physics (b) the rigorous theory of limiting processes "which lead from the atomistic view to the laws of motion of continua"	Partially resolved depending on how the original statement is interpreted. [9] Items (a) and (b) were two specific problems given by Hilbert in a later explanation. [1] Kolmogorov's axiomatics (1933) is now accepted as standard. There is some success on the way from the "atomistic view to the laws of motion of continua." [10]	1933– 2002?
7th	Is a^b transcendental, for algebraic $a \neq 0,1$ and irrational algebraic b ?	Resolved. Result: Yes, illustrated by Gelfond's theorem or the Gelfond– Schneider theorem.	1934

Hilbert's First Problem

Let A be an infinite set of real numbers. Then we need to prove that A is in one-to-one correspondence either with the set of natural numbers, or with the set of all real numbers (i.e. with the continuum).

Alternatively (with transfinite numbers allowed):

$$\aleph_1 = \mathscr{P}(\mathbb{N}) = 2^{\aleph_0}$$
:

ZFC to the Rescue ...

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to find the time for the thorough study I intended to make of your work. I find myself in complete agreement with you in all essentials, particularly when you reject any psychological element [Moment] in logic and when you place a high value upon an ideography [[Begriffsschrift]] for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. With regard to many particular questions, I find in your work discussions, distinctions, and definitions that one seeks in vain in the works of other logicians. Especially so far as function is concerned (§ 9 of your Begriffsschrift), I have been led on my own to views that are the same even in the details. There is just one point where I have encountered a difficulty. You state (p. 17 [[p. 23 above]]) that a function, too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection [Menge] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I should like to discuss your work very thoroughly. I already have your books or shall buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has remained very much behind; in your works I find the best I know of our time, and therefore I have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your *Grundgesetze*; I hope that this will still be done.

Very respectfully yours,

BERTRAND RUSSELL

The above contradiction, when expressed in Peano's ideography, reads as follows:

 $w = \operatorname{cls} \cap x \, \mathfrak{s}(x \sim \varepsilon \, x)$. $\supset : w \, \varepsilon \, w . = . \, w \sim \varepsilon \, w$.

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to find the time for the thorough study I intended to make of your work. I find myself in complete agreement with you in all essentials, particularly when you reject any psychological element [Moment] in logic and when you place a high value upon an ideography [[Begriffsschrift]] for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. With regard to many particular questions, I find in your work discussions, distinctions, and definitions that one seeks in vain in the works of other logicians. Especially so far as function is concerned (§ 9 of your Begriffsschrift), I have been led on my own to views that are the same even in the details. There is just one point where I have encountered a difficulty. You state (p. 17 [[p. 23 above]]) that a function, too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection [Menge] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I should like to discuss your work very thoroughly. I already have your books or shall buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has remained very much behind; in your works I find the best I know of our time, and therefore I have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your *Grundgesetze*; I hope that this will still be done.

Very respectfully yours,

BERTRAND RUSSELL

The above contradiction, when expressed in Peano's ideography, reads as follows:

 $w = \operatorname{cls} \cap x \circ (x \sim \varepsilon x)$. $\supset : w \varepsilon w .= . w \sim \varepsilon w$.

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to find the time for the thorough study I intended to make of your work. I find myself in complete agreement with you in all essentials, particularly when you reject any psychological element [Moment] in logic and when you place a high value upon an ideography [[Begriffsschrift]] for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. With regard to many particular questions, I find in your work discussions, distinctions, and definitions that one seeks in vain in the works of other logicians. Especially so far as function is concerned (§ 9 of your Begriffsschrift), I have been led on my own to views that are the same even in the details. There is just one point where I have encountered a difficulty. You state (p. 17 [[p. 23 above]]) that a function, too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection [Menge] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I should like to discuss your work very thoroughly. I already have your books or shall buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has remained very much behind; in your works I find the best I know of our time, and therefore I have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your *Grundgesetze*; I hope that this will still be done.

Very respectfully yours,

BERTRAND RUSSELL

The above contradiction, when expressed in Peano's ideography, reads as follows:

 $w = \operatorname{cls} \cap x \circ (x \sim \varepsilon x)$. $\supset : w \varepsilon w .= . w \sim \varepsilon w$.

FregTHEN2

KnightKnave_SmullyanKKPro blem1.1 AthenCfromAthenBandBthen

BiconditionalIntroByChaining

BogusBiconditional

CheatersNeverPropser

Contrapositive_NYS_2

Disj_Syll

GreenCheeseMoon2

HypSyll

LarrylsSomehowSmart

Modus_Tollens

RussellsLetter2Frege

ThxForThePCOracle

Explosion

OnlyMediumOrLargeLlamas

GreenCheeseMoon1

Disj_Elim

kok13_28

KingAce2

kok_13_31

✓ RussellsLetter2Frege

The challenge here is to prove that from Russell's instantiation of Frege's doomed Axiom V a contradiction can be promptly derived. The letter has of course been examined in some detail by S Bringsjord (in the Mar 16 2020 lecture in the 2020 lecture lineup); it, along with an astoundingly soft-spoken reply from Frege, can be found here. Put meta-logically, your task in the present problem is to build a proof that confirms this:

$$\{\exists x orall y ((y \in x)
ightarrow (y
otin y))\} dash \zeta \wedge
eg \zeta.$$

Make sure you understand that the given here is an instantiation of Frege's Axiom V; i.e. it's an instantiation of

$$\exists x orall y ((y \in x) o \phi(y)).$$

(The notation $\phi(y)$, recall, is the standard way in mathematical logic to say that y is free in ϕ .) **Note**: Your finished proof is allowed to make use the PC-provability oracle (but only that oracle).

(Now a brief remark on matters covered by in class by Bringsjord when second-order logic = \mathcal{L}_2 arrives on the scene: Longer term, and certainly constituting evidence of Frege's capacity for ingenius, intricate deduction, it has recently been realized that while Frege himself relied on Axiom V to obtain what is known as Hume's Principle (= HP), this reliance is avoidable. That from just HP we can deduce all of Peano Arithmetic (PA) (!) is a result Frege can be credited with showing; the result is known today as Frege's Theorem (= FT). Following the link just given will reward the reader with an understanding of HP, and how how to obtain **PA** from it.)

Deadline 22 Apr 2020 23:59:00 EST

Solve

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

Axiom V
$$\exists x \forall y [y \in x \leftrightarrow \phi(y)]$$

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

Axiom V
$$\exists x \forall y [y \in x \leftrightarrow \phi(y)]$$

a formula of arbitrary size in which the variable y is free; this formula ascribes a property to y

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

Axiom V
$$\exists x \forall y [y \in x \leftrightarrow \phi(y)]$$

a formula of arbitrary size in which the variable y is free; this formula ascribes a property to y

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

The Rest of Math, Engineering, etc.

Foundation

Axiom V etc.

The Rest of Math, Engineering, etc.

The Rest of Math, Engineering, etc.

New Foundation

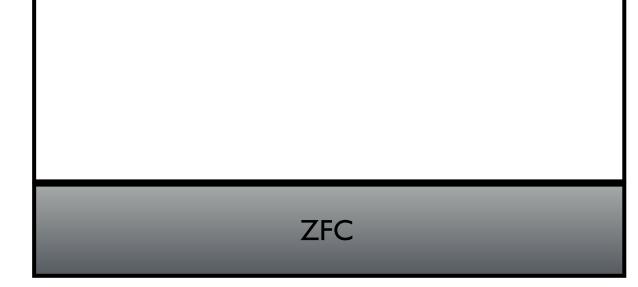
The Rest of Math, Engineering, etc.

New Foundation

ZFC

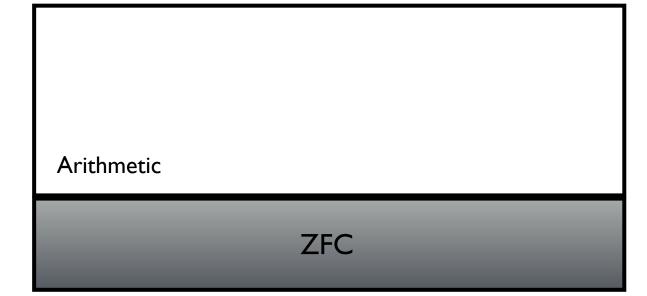
The Rest of Math, Engineering, etc.

New Foundation



The Rest of Math, Engineering, etc.

New Foundation



The Rest of Math,
Engineering, etc.

Arithmetic

New Foundation

ZFC

So what are the axioms in ZFC?

The Rest of Math,
Engineering, etc.

Arithmetic

New Foundation

ZFC

So what are the axioms in ZFC?

ZFC

6.4.1 ZFC

The Zermelo-Fraenkel Axioms for Set Theory, or just 'ZFC' for short, include the following nine axioms. $^{\rm 34}$

Axiom of Extensionality

$$\forall x \forall y (\forall z (z \in x \longleftrightarrow z \in y) \to x = y)$$

Axiom Schema of Separation

$$\forall x_0 \dots \forall x_{n-1} \forall x \exists y \forall z (z \in y \longleftrightarrow (z \in x \land \phi(z, x_0, \dots, x_{n-1})))$$

Pair Set Axiom

$$\forall x \forall y \exists z \forall w (w \in z \longleftrightarrow (w = x \lor w = y))$$

Sum Set Axiom

$$\forall x\exists y\forall z(z\in y\longleftrightarrow\exists w(w\in x\land z\in w))$$

Power Set Axiom

$$\forall x \exists y \forall z (z \in y \longleftrightarrow \forall w (w \in z \to w \in x))$$

Axiom of Infinity

$$\exists x (\emptyset \in x \land \forall y (y \in x \longrightarrow y \cup \{y\} \in x))$$

Axiom Schema of Replacement

$$\forall x_0 \dots \forall x_{n-1} (\forall x \exists^{=1} y \phi(x, y, x_0, \dots, x_{n-1}) \rightarrow \forall u \exists v \forall y (y \in v \longleftrightarrow \exists x (x \in u \land \phi(x, y, x_0, \dots, x_{n-1}))))$$

Axiom of Choice

$$\forall x((\emptyset \notin x \land \forall u \forall v((u \in x \land v \in x \land u \neq v) \rightarrow u \cap v = \emptyset)) \rightarrow \exists y \forall w(w \in x \rightarrow \exists^{=1} zz \in w \cap y))$$

ZFC

6.4.1 ZFC

The Zermelo-Fraenkel Axioms for Set Theory, or just 'ZFC' for short, include the following nine axioms. 34

Axiom of Extensionality

$$\forall x \forall y (\forall z (z \in x \longleftrightarrow z \in y) \to x = y)$$

Axiom Schema of Separation

$$\forall x_0 \dots \forall x_{n-1} \forall x \exists y \forall z (z \in y \longleftrightarrow (z \in x \land \phi(z, x_0, \dots, x_{n-1})))$$

Pair Set Axiom

$$\forall x \forall y \exists z \forall w (w \in z \longleftrightarrow (w = x \lor w = y))$$

Sum Set Axiom

$$\forall x\exists y\forall z(z\in y\longleftrightarrow\exists w(w\in x\land z\in w))$$

Power Set Axiom

$$\forall x \exists y \forall z (z \in y \longleftrightarrow \forall w (w \in z \to w \in x))$$

Axiom of Infinity

$$\exists x (\emptyset \in x \land \forall y (y \in x \to y \cup \{y\} \in x))$$

Axiom Schema of Replacement

$$\forall x_0 \dots \forall x_{n-1} (\forall x \exists^{=1} y \phi(x, y, x_0, \dots, x_{n-1}) \rightarrow \forall u \exists v \forall y (y \in v \longleftrightarrow \exists x (x \in u \land \phi(x, y, x_0, \dots, x_{n-1}))))$$

Axiom of Choice

$$\forall x((\emptyset \notin x \land \forall u \forall v((u \in x \land v \in x \land u \neq v) \rightarrow u \cap v = \emptyset)) \rightarrow \exists y \forall w(w \in x \rightarrow \exists^{=1} zz \in w \cap y))$$

(Do you see a way to prove that some sets exist based on this?)

SEP

 $\forall x_1 \dots \forall x_k \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z, x_1, \dots, x_k))]$

where x and y are distinct, and are both distinct from z and the x_i ; and, as usual for us now, ϕ expresses a property using \in .

SEP

 $\forall x_1 \dots \forall x_k \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z, x_1, \dots, x_k))]$

where x and y are distinct, and are both distinct from z and the x_i ; and, as usual for us now, ϕ expresses a property using \in .

"Given beforehand some set x and property \mathscr{P} expressed by a formula ϕ that uses \in for its relation, the set y composed of $\{z \in x : \mathscr{P}(z)\}$ exists."

SEP

 $\forall x_1 \dots \forall x_k \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z, x_1, \dots, x_k))]$

where x and y are distinct, and are both distinct from z and the x_i ; and, as usual for us now, ϕ expresses a property using \in .

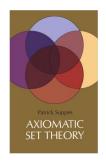
"Given beforehand some set x and property \mathscr{P} expressed by a formula ϕ that uses \in for its relation, the set y composed of $\{z \in x : \mathscr{P}(z)\}$ exists."

(How does this neutralize Russell's letter to Frege!)

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



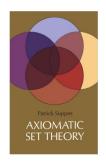
Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem 1 from Suppes:

$$\vdash \forall x (x \not\in \emptyset)$$

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



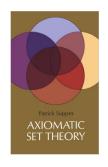
Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem 1 from Suppes:

$$\vdash \forall x (x \not\in \emptyset)$$

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



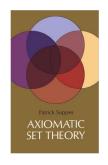
Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem I from Suppes:

$$\vdash \forall x (x \notin \emptyset)$$

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem I from Suppes:

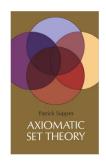
$$\vdash \forall x (x \notin \emptyset)$$

You can try a second "Suppesian" theorem in ZFC (Theorem 2):

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem I from Suppes:

$$\vdash \forall x (x \notin \emptyset)$$

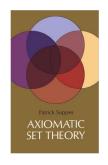
You can try a second "Suppesian" theorem in ZFC (Theorem 2):

$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem 1 from Suppes:

$$\vdash \forall x (x \notin \emptyset)$$

You can try a second "Suppesian" theorem in ZFC (Theorem 2):

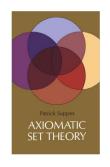
$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

Now let's add the Definition of Subset to ZFC:

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem I from Suppes:

$$\vdash \forall x (x \notin \emptyset)$$

You can try a second "Suppesian" theorem in ZFC (Theorem 2):

$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

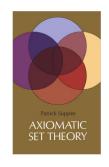
Now let's add the Definition of Subset to ZFC:

$$\forall x \forall y [x \subseteq y \leftrightarrow \forall z (z \in x \to z \in y)]$$

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem 1 from Suppes:

$$\vdash \forall x (x \notin \emptyset)$$

You can try a second "Suppesian" theorem in ZFC (Theorem 2):

$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

Now let's add the Definition of Subset to ZFC:

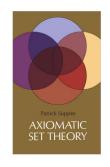
$$\forall x \forall y [x \subseteq y \leftrightarrow \forall z (z \in x \to z \in y)]$$

With this definition, can you prove (Theorem 3) that every set is a subset of itself?

$$\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \not\in y)$$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and you try to show Theorem 1 from Suppes:

$$\vdash \forall x (x \notin \emptyset)$$

You can try a second "Suppesian" theorem in ZFC (Theorem 2):

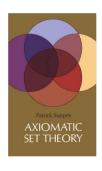
$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

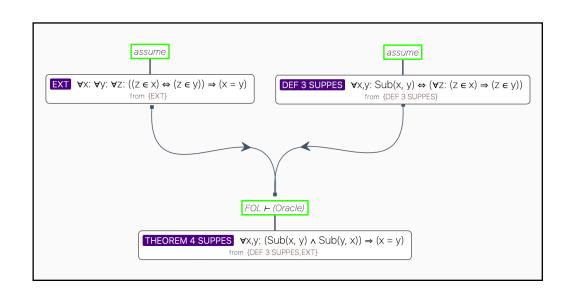
Now let's add the Definition of Subset to ZFC:

$$\forall x \forall y [x \subseteq y \leftrightarrow \forall z (z \in x \to z \in y)]$$

With this definition, can you prove (Theorem 3) that every set is a subset of itself?

Re.Theorem 4 in HS®





EXT: Two sets which contain the same elements are equal.

EXT: Two sets which contain the same elements are equal.

PAIR: Given two sets A and B, the pair set {A, B} exists.

EXT: Two sets which contain the same elements are equal.

PAIR: Given two sets A and B, the pair set {A, B} exists.

. . .

EXT: Two sets which contain the same elements are equal.

PAIR: Given two sets A and B, the pair set {A, B} exists.

. . .

INF: There exists an infinite set, viz. $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots\}$.

EXT: Two sets which contain the same elements are equal.

PAIR: Given two sets A and B, the pair set {A, B} exists.

. . .

INF: There exists an infinite set, viz. $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots\}$.

AC: Given a set A of nonempty pairwise disjoint sets, there exists a set which contains exactly one element of each set in A.

EXT: Two sets which contain the same elements are equal.

PAIR: Given two sets A and B, the pair set {A, B} exists.

. . .

 \mathbb{N}

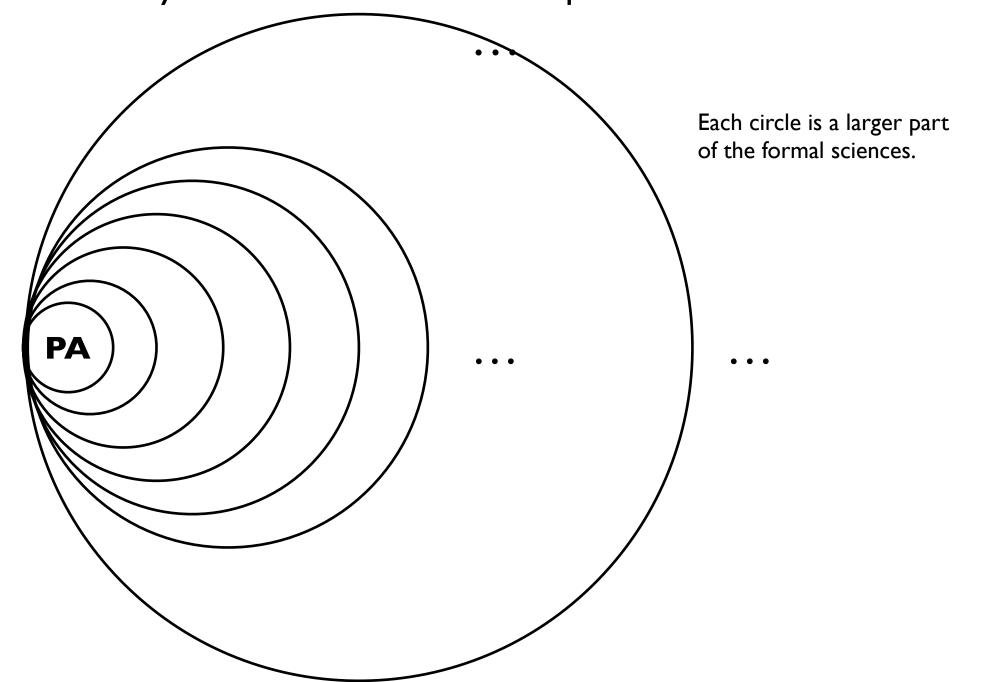
INF: There exists an infinite set, viz. $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \dots\}$.

AC: Given a set A of nonempty pairwise disjoint sets, there exists a set which contains exactly one element of each set in A.

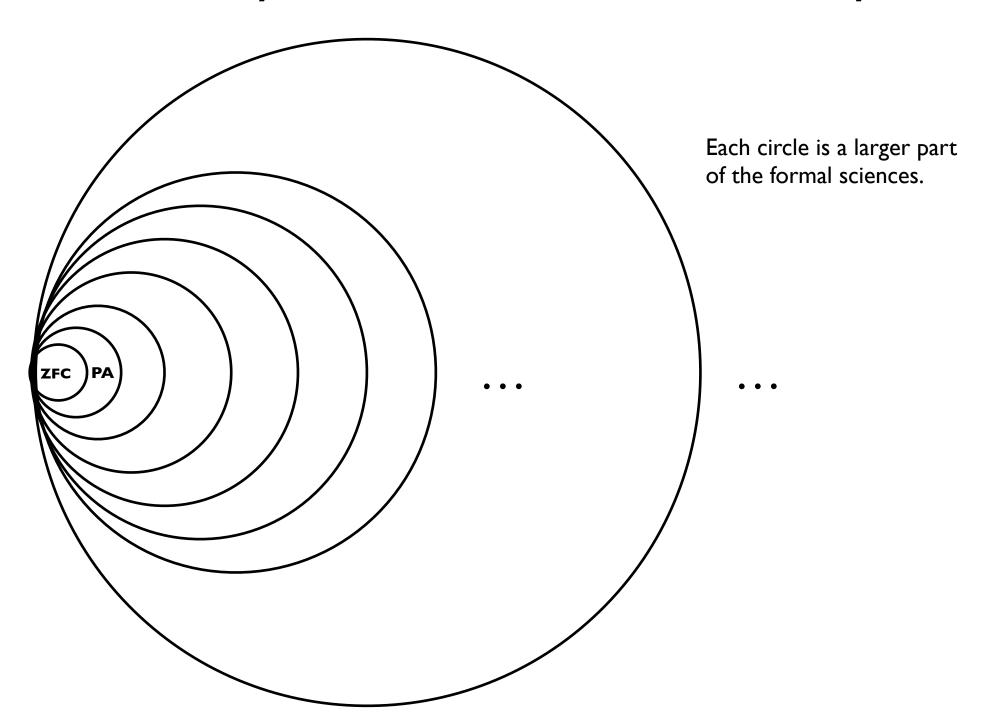
Better Overarching Pictorial Conception of ZF/ZFC ...

Arithmetic is Part of All Things Sci/Eng/Tech!

and courtesy of Gödel: We can't even prove all truths of arithmetic!



Actually, the true kernel is set theory!



But these are easily misinterpreted pictures; so ...

$PA_2 = Z_2$

A1
$$\forall x(0 \neq s(x))$$

A2 $\forall x \forall y(s(x) = s(y) \rightarrow x = y)$
A3 $\forall x(x \neq 0 \rightarrow \exists y(x = s(y)))$
A4 $\forall x(x + 0 = x)$
A5 $\forall x \forall y(x + s(y) = s(x + y))$
A6 $\forall x(x \times 0 = 0)$
A7 $\forall x \forall y(x \times s(y) = (x \times y) + x)$

Induction Axiom $\ \forall X[(X(0) \land \forall x(X(x) \to X(s(x)) \to \forall xX(x)]$

Comprehension Axioms $\exists X \forall x (x \in X \leftrightarrow \phi(x))$

$PA_2 = Z_2$

A1
$$\forall x(0 \neq s(x))$$

A2 $\forall x \forall y(s(x) = s(y) \rightarrow x = y)$
A3 $\forall x(x \neq 0 \rightarrow \exists y(x = s(y)))$
A4 $\forall x(x + 0 = x)$
A5 $\forall x \forall y(x + s(y) = s(x + y))$
A6 $\forall x(x \times 0 = 0)$
A7 $\forall x \forall y(x \times s(y) = (x \times y) + x)$

Induction Axiom $\ \forall X[(X(0) \land \forall x(X(x) \to X(s(x)) \to \forall xX(x)]$

Comprehension Axioms $\exists X \forall x (x \in X \leftrightarrow \phi(x))$

"Reality"

Logic

Math

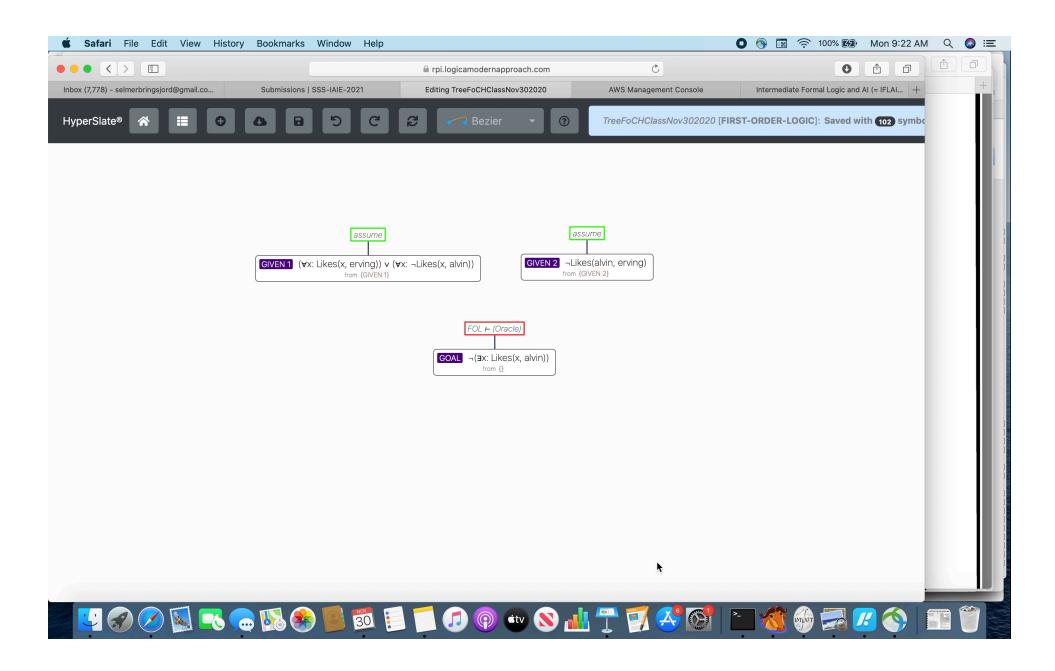
ZFC

 $Z_2 (= PA_2)$

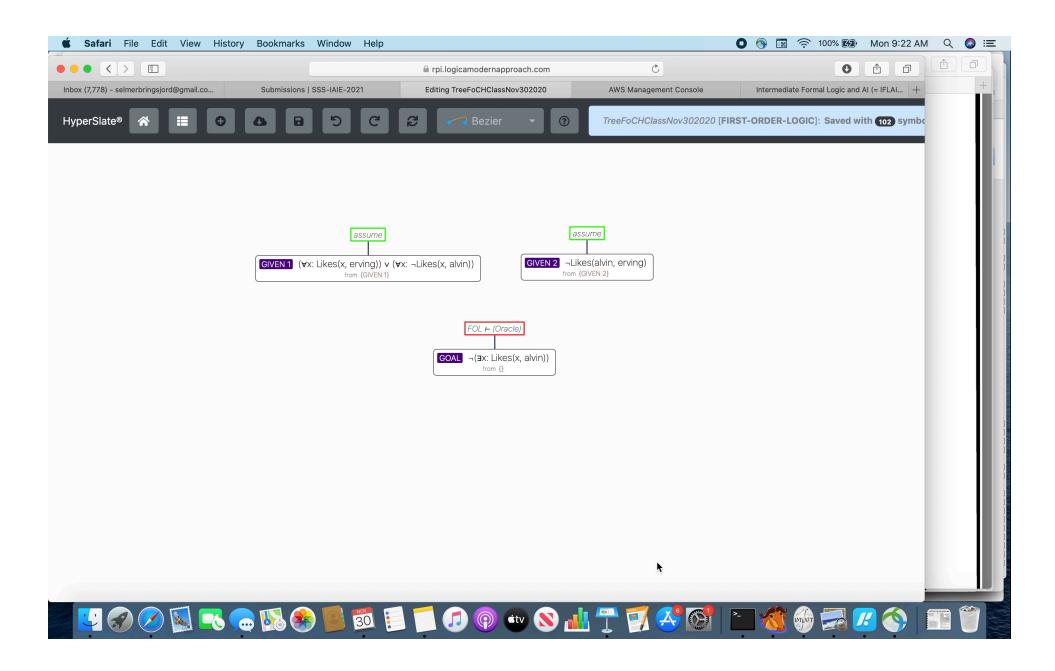
basis acresmetalcar as	RCA ₀	WKL ₀	ACA ₀	ATR ₀	Π_1^1 -CA ₀
analysis (separable): differential equations continuous functions	IV.8 II.6, II.7	IV.8 IV.2, IV.7	III.2	134,345°	1 500 300 9 643 9 30 7 56
completeness, etc. Banach spaces open and closed sets Borel and analytic sets	II.4 II.10 II.5 V.1	IV.1 IV.9, X.2 IV.1	III.2	V.4, V.5 V.1, V.3	X.2 VI.1 VI.2, VI.
algebra (countable): countable fields commutative rings vector spaces Abelian groups	II.9 III.5 III.4 III.6	IV.4, IV.5 IV.6	III.3 III.5 III.4 III.6	V.7	VI.4
miscellaneous: mathematical logic countable ordinals infinite matchings the Ramsey property infinite games	II.8 V.1	IV.3 X.3	V.6.10 X.3 III.7 V.8	V.1, V.6 X.3 V.9 V.8	VI.6 VI.5

Proofs of Non-Entailment in HS® ...

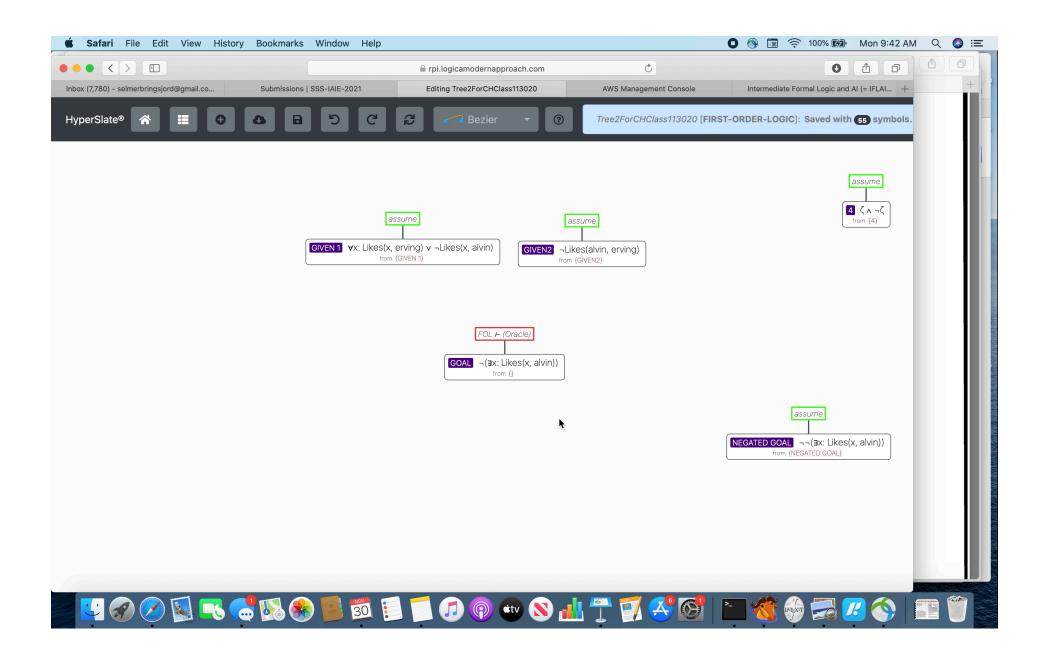
We Have Entailment



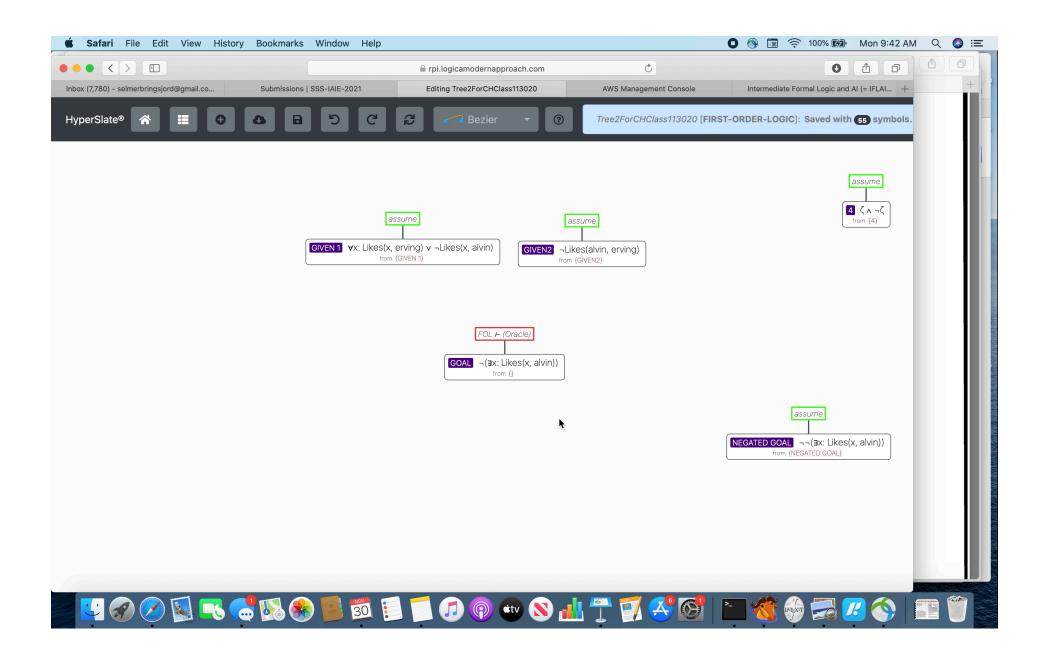
We Have Entailment



We Don't Have Entailment



We Don't Have Entailment



Cantorian Context ...

Cantor (1878):

Cantor (1878):

$$\mathcal{P}(\mathbb{N}) > \mathbb{N}$$

Cantor (1878):

$$\mathcal{P}(\mathbb{N}) > \mathbb{N}$$

The power set of the natural numbers is larger than than the natural numbers!

Cantor (1878):

$$\mathcal{P}(\mathbb{N}) > \mathbb{N}$$

The power set of the natural numbers is larger than than the natural numbers!

How do we know this???!???

Continuum Hypothesis

(sans use of ordinal or cardinal numbers)

Continuum Hypothesis

(sans use of ordinal or cardinal numbers)

 $CH: \forall S[(S \subset \mathbb{R} \land \neg \mathbf{Fin}(S)) \to (S \sim \mathbb{N} \lor S \sim \mathbb{R})]$

Continuum Hypothesis

(sans use of ordinal or cardinal numbers)

$$\mathrm{CH}: \forall S[(S \subset \mathbb{R} \land \neg \mathbf{Fin}(S)) \to (S \sim \mathbb{N} \lor S \sim \mathbb{R})]$$

Every infinite subset of the reals is either the same size as the natural numbers or the same size as the reals.

Generalized Continuum Hypothesis

Generalized Continuum Hypothesis

For every infinite set $S, \mathcal{P}(S) > S$.

Generalized Continuum Hypothesis

For every infinite set $S, \mathcal{P}(S) > S$.

Generalized Continuum Hypothesis (GCH):

There's no set (size-wise) between S and P(S).

Single slide summary

Cantor (1878):

$$\mathcal{P}(\mathbb{N}) > \mathbb{N}$$

The power set of the natural numbers is larger than than the natural numbers!

How do we know this???!???

$$\mathrm{CH}: \forall S[(S \subset \mathbb{R} \land \neg \mathbf{Fin}(S)) \to (S \sim \mathbb{N} \lor S \sim \mathbb{R})]$$

Every infinite subset of the reals is either the same size as the natural numbers or the same size as the reals.

For every infinite set
$$S, \mathcal{P}(S) > S$$
.

Generalized Continuum Hypothesis (GCH):

Every infinite subset of the reals is either the same size as the natural numbers or the same size as the reals.

Cantor (1878):

$$\mathcal{P}(\mathbb{N}) > \mathbb{N}$$

The power set of the natural numbers is larger than than the natural numbers!

How do we know this???!???

$$CH: \forall S[(S \subset \mathbb{R} \land \neg \mathbf{Fin}(S)) \to (S \sim \mathbb{N} \lor S \sim \mathbb{R})]$$

Every infinite subset of the reals is either the same size as the natural numbers or the same size as the reals.

For every infinite set
$$S, \mathcal{P}(S) > S$$
.

Generalized Continuum Hypothesis (GCH):

Every infinite subset of the reals is either the same size as the natural numbers or the same size as the reals.

Re "The Adventure of Silver Blaze" ...

The Adventure of Silver Blaze

From Wikipedia, the free encyclopedia

For the 1937 film, see Silver Blaze (1937 film). For the 1977 film, see Silver Blaze (1977 film).

"The Adventure of Silver Blaze", one of the 56 Sherlock Holmes short stories written by Sir Arthur Conan Doyle, is one of 12 in the cycle collected as *The Memoirs of Sherlock Holmes*. It was first published in *The Strand Magazine* in December 1892.^[1]

Doyle ranked "Silver Blaze" 13th in a list of his 19 favourite Sherlock Holmes stories. [2] One of the most popular Sherlock Holmes short stories, "Silver Blaze" focuses on the disappearance of the eponymous race horse (a famous winner, owned by a Colonel Ross) on the eve of an important race and on the apparent murder of its trainer. The tale is distinguished by its atmospheric Dartmoor setting and late-Victorian sporting milieu. It also features some of Conan Doyle's most effective plotting, hingeing on the "curious incident of the dog in the night-time":

Gregory (Scotland Yard detective): Is there any other point to which you would wish to draw my attention?

Holmes: To the curious incident of the dog in the night-time.

Gregory: The dog did nothing in the night-time.

Holmes: That was the curious incident.

Contents [hide]

- 1 Plot summary
- 2 Publication history
- 3 Adaptations
 - 3.1 Film and television
 - 3.2 Radio
- 4 In popular culture
- 5 References
- 6 External links

1892 illustration by Sidney Paget in *The Strand Magazine*

Author Arthur Conan Doyle

Country Great Britain

Language English

Series The Memoirs of Sherlock Holmes

Genre(s) Detective story

Published in December 1892

Preceded by "The Adventure of the Copper

Beeches"

Followed by "The Adventure of the Cardboard

Box"

End of Part I!

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

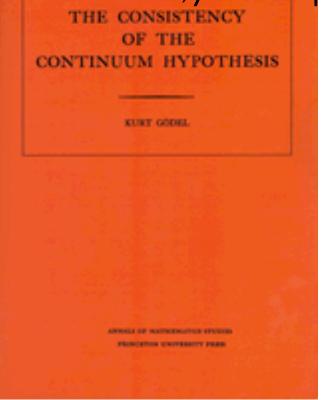
Continuum Hypothesis: There's no set of a size between the integers and the reals.

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.



t: "... a very plausible theorem, which nevertheless, in spite strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

Straker dead from a "savage blow." Inspector Gregory: "Fitzroy Simpson definitely guilty, and we arrested him!"

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

Straker dead from a "savage blow." Inspector Gregory: "Fitzroy Simpson definitely guilty, and we arrested him!"

Holmes: "But I've created a scenario in which all your clues/ evidence are true, but Fitzroy is perfectly innocent ..."

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

Straker dead from a "savage blow." Inspector Gregory: "Fitzroy Simpson definitely guilty, and we arrested him!"

Holmes: "But I've created a scenario in which all your clues/ evidence are true, but Fitzroy is perfectly innocent ..."

Gödel: "I've created a scenario where all of ZFC is true, but so is the Continuum Hypothesis!"

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

Straker dead from a "savage blow." Inspector Gregory: "Fitzroy Simpson definitely guilty, and we arrested him!"

Holmes: "But I've created a scenario in which all your clues/ evidence are true, but Fitzroy is perfectly innocent ..."

Gödel: "I've created a scenario where all of ZFC is true, but so is the Continuum Hypothesis!"

1900 Hilbert: "... a very plausible theorem, which nevertheless, in spite of the most strenuous efforts, no one has succeeded in proving. ..."

Continuum Hypothesis: There's no set of a size between the integers and the reals.

1938 Gödel: If math is consistent, you can't prove that CH is false.

(1962 Cohen: If math is consistent, you can't prove that CH is true.)

"Silver Blaze"

Straker dead from a "savage blow." Inspector Gregory: "Fitzroy Simpson definitely guilty, and we arrested him!"

Holmes: "But I've created a scenario in which all your clues/ evidence are true, but Fitzroy is perfectly innocent ..."

Gödel: "I've created) scenario where all of ZFC is true, but so is the Continuum Hypothesis!"

Facts F ...

Scenario G

(in honor of Inspector Gregory)

"And yet," said I, "even now I fail to understand what the theory of the police can be."

"I am afraid that whatever theory we state has very grave objections to it," returned my companion. "The police imagine, I take it, that this Fitzroy Simpson, having drugged the lad, and having in some way obtained a duplicate key, opened the stable door and took out the horse, with the intention, apparently, of kidnapping him altogether. His bridle is missing, so that Simpson must have put this on. Then, having left the door open behind him, he was leading the horse away over the moor, when he was either met or overtaken by the trainer. A row naturally ensued. Simpson beat out the trainer's brains with his heavy stick without receiving any injury from the small knife which Straker used in self-defense, and then the thief either led the horse on to some secret hiding-place, or else it may have bolted during the struggle, and be now wandering out on the moors. That is the case as it appears to the police, and improbable as it is, all other explanations are more improbable still. However, I shall very quickly test the matter when I am once upon the spot, and until then I cannot really see how we can get much further than our present position."

Sherlock as Logician

Sherlock as Logician

F = facts of the case

G = Inspector Gregory's scenario

H = Holmes's scenario

Sherlock as Logician

F = facts of the case

G = Inspector Gregory's scenario

H = Holmes's scenario

Holmes: "Gregory's claim is G (Simpson is guilty, & other details re. what he did). We have F, the facts of the case, disputed by no one (and obviously consistent). The question is: $F \vdash G$? The answer is clearly No, for my scenario H, which entails $\neg G$, is consistent with the facts $[Con(F \cup H)]$, and H entails $\neg G$. Here's the proof: Suppose for *reductio* that $F \vdash G$. Then $F \cup H$ are inconsistent — contradiction! Hence $F \not\vdash G$."

Proof sketch ...

Questions:

How many \mathcal{L}_1 formulae are there?

And is each formula finite in length?

Proof-sketch: The complete set-theoretic universe, known as V, stratified and built up step by step by iterated use of the power-set operator \mathscr{P} , is the complete collection of all sets sanctioned by **ZFC**. (Details require transfinite numbers.)

Let's construct, said Gödel in Holmes-in-"Silver Blaze" fashion, our *own* scenario: viz. a hierarchy L of sets (**the inner model of constructible sets**), likewise building up gradually level by level, starting with \emptyset , but only taking one step upwards to the set $Def_{\mathcal{L}_1}(A)$ of all subsets of A definable in \mathcal{L}_1 = first-order logic using only the two-place relation \in . We can show that L gives us a model that renders **ZFC** true; and, all that is true on this model is consistent with **ZFC**. In particular, V = L is consistent, assuming that **ZFC** is (and we made this assumption to get started in the first place).

But note along with the assumption that V=L, there are only a countable number of L-defining \mathcal{L}_1 formulae. Since by hypothesis every real number occurs on some level of the L-hierarchy, and each jump up the hierarchy requires a first-order formula, there are only as many real numbers as the first uncountable "size" we have $(=\omega_1=\mathcal{P}(\mathbb{N}))$. Hence, CH holds. **QED**

slutten