Tutorial, Mechanics;

Historical & Scientific Context

re Formal Logic, Al, and Logic Machines;
And The Terrific Triad

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intermediate Formal Logic & Al (IFLAI2)
8/31/2023

RA/| R

Rensselaer Al a}md Reasoning Lab



In the News ...



&he New Pork Times 09/01/202

WHAT IS SCHOOL FOR?






WHAT IS SCHOOL FOR?
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schools. It's been ... stressful. But these
disturbances in our education equilibrium have also
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By Bryan Caplan
Dr. Caplan is a professor of economics at George Mason University
and the author of “The Case Against Education.”

Sign Up for the Education Briefing From
preschool to grad school, get the latest U.S.
education news. Get it sent to your inbox.

I have deep doubts about the intellectual and
social value of schooling. My argument in a
nutshell: First, everyone leaves school
eventually. Second, most of what you learn in
school doesn’t matter after graduation. Third,
human beings soon forget knowledge they
rarely use.

Strangely, these very doubts imply that the
educational costs of the coronavirus pandemic
are already behind us. Forced optimism
notwithstanding, the remote schooling that
millions of students endured during the
pandemic looks like a pedagogical disaster.
Some researchers found that being in Zoom
school was about equivalent to not being in
school at all. Others simply found that test
scores rose much less than they normally
would.
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But given my doubts about the value of school,
I figure that most of the learning students lost
in Zoom school is learning they would have
lost by early adulthood even if schools had
remained open. My claim is not that in the
long run remote learning is almost as good as
in-person learning. My claim is that in the long
run in-person learning is almost as bad as
remote learning.

How do we know all this? My work focuses on
tests of adult knowledge — what adults retain
after graduation. The general pattern is that
grown-ups have shockingly little academic
knowledge. College graduates know about
what you’d expect high school graduates to
know; high school graduates know about what
you’d expect dropouts to know; dropouts
know next to nothing. This doesn’t mean that
these students never knew more; it just means
that only a tiny fraction of what they learn
durably stays in their heads.
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IFLAI2 web page is the anchor!



http://www.logicamodernapproach.com/rpi/iflai2f21.bringsjord/

Be all set for class on Sept 7
in the HyperGrader®
platform ...Glimpse now of
Coming Review of
The Three Basic Extensional

Logics (L pr L Z>) ...



The Universe of Logics

o DCECH 2 = first-order logic

\ %o = zeroth-order logic

‘ LProrCaLc = propositional calculus)




) A crimlinal genius jnearly a
match for Sherlock Holmes
(Do you recognize the Dr?)
has built a massive hydrogen
bomb, and life on Earth is
hanging in the balance,
hinging on whether you
make the logical prediction.
Dr M gives you a sporting
chance to: make the right
prediction, snip or not snip
accordingly, and prove that
you're right ...

© 2014-23 Selmer Bringsjord
with a debt to P. Johnson-Laird
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If one of the followlng assertions 1s true then so 1s
the other:

(1) ITf the red wire runs to the bomb, then the blue
wlre runs to the bomb; and, 1f the blue wire runs to
the bomb, then the red wire runs to the bomb.

(2) The red wire runs to the bomb.

Given this perfectly reliable clue from Dr Moriarty, if either wire is more likely
to run to the bomb, that wire does run to the bomb, and the bomb is ticking,
with only a minute left! If both are equiprobable, neither runs to the bomb, and
you are powerless. Make your prediction as to what will happen when a wire is
snipped, and then make your selected snip by clicking on the wire you want to
snip! Or leave well enough alone!

Red more likely.

Blue more likely.

Equiprobable.
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that you indeed made
an irrational
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Proposition: The blue wire is more likely!

Proof: (|) can be treated as a biconditional, obviously (R <=> B).

There are two top-level cases to consider: (|) and (2) are both true;
or both are false. In the case where they are both true, it’s trivial to
deduce both R and B. So far, then, R and B are equiprobable. What
nappens in the case where (1) and (2) are both false! We immediately
have ~R from the denial of (2). But a biconditional is true just in case
both sides are true, or both sides are false; so we have two sub-cases
to consider.

Consider first the case where R is true and B is false. We have an
immediate contradiction in this sub-case, so both R and B can both be
deduced here, and we have not yet departed from equiprobable. So
what about the case where R is false and B is true! The falsity of R is
not new information (we already have that from the denial of (2)), but
we can still derive B. Hence the blue wire is more likely. QED

STOP
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There are two top-level cases to consider: (l) and (2) are both true; or both
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blue wire is more likely. QED
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Special Llamas Disjunction

There’s a thing such that it’s both a llama and a non-llama;
or
there’s a thing such that if it’s a llama, everything is a llama;
or
there’s a thing such that every llama is a non-llama.
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Background Claim

R Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is
constituted by certain logico-mathematically based reasoning and decision-making in response to
real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not
fundamentally rational, since, contra Darwin, their minds are fundamentally qualitatively inferior
to the human mind. As to whether computing machines/robots are fundamentally rational, the
answer is “No.” For starters, if z can’t read, write, and create, £ can’t be rational; computing
machines /robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.
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DCEC*

Rules of Inference
Syntax

[Ry] [R]
Object | Agent | Self [ Agent | ActionType | Action C Event | C(t,P(a,1,0) = K(a.1,0)) C(1,K(a,1,9) = B(a,1,9))
" Moment | Boolean | Fluent | Numeric Ct,0)1<tp...t<mn (R3] K(a.1,0) [Ra]
3 4
K(ay,ty,...K(an,m,9)...) [
action : Agent x ActionType — Action RS]

C(1,K(a,11,01 — ¢2)) = K(a,1p,01) — K(a,13,07)
initially : Fluent — Boolean

holds : Fluent x Moment — Boolean C(t,B(a,11.01 = ¢2)) = B(a,1p.41) = B(a,13.07) el
happens : Event x Moment — Boolean [R7]
clipped : Moment x Fluent x Moment — Boolean €l Clirs 01 2)) = €(12,01) = Cl13.02)

f ::= initiates : Event x Fluent x Moment — Boolean C(t,Vx. ¢ — O[x —1]) [RS] C(,07 <> 0y — 0y — ﬁ¢,l)
terminates : Event x Fluent x Moment — Boolean [R1o]
prior : Moment x Moment — Boolean Cl 01 A nOn = 0] [0 == 0 = )
interval : Moment x Boolean Bar9) 0w Ri1 B(a.1.¢) Bla.r.y) Ri1p)

. Blav) < TBanyne P
+ : Agent — Self
payoff : Agent x ActionType x Moment — Numeric S(s,h,1,0) Rpa)
B(h,.B(5,1.9))
ti=x:S eS| fltgye. ) 1(a,t, happens(action(a* ), 1)) Res]
P(a,t, happens(action(a*®,a),t))
t:Boolean | =0 [ 9 AW | OV | B(a.1,0) B(a.t.O(a*,t.«b,ha])pms(actian(a*,(x),l/)))
P(a,1,0) | K(a,7,0) | C(1,0) | S(a,b,1,0) | S(a.t,¢) O(a,1,0, happens(action(a*,a),1')) 14l
T Blat,0) | Dlast, holds(f.1")) | X(at, happens(action(a® ). ')) K(a,1,1(a* 1, happens(action(a* ,a),1"))) "
O(a,1,9, happens(action(a®,),1")) oV [Rys]

O(a.1.9,y) < O(a,1.y,y)
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Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let Il = p, = 2,p, = 3,p3 = 5,...,p,. be
a finite, exhaustive consecutive sequence of prime numbers. Next, let My be
pP1 X p2 X +++ X pi, and set My; to My + 1. Either My, is prime, or not; we thus
have two (exhaustive) cases to consider.

C1 Suppose My, is prime. In this case we immediately have a prime number
beyond any in II — contradiction!

C2 Suppose on the other hand that M{, is not prime. Then some prime p
divides M{,. (Why?) Now, p itself is either in II, or not; we hence have
two sub-cases. Supposing that p is in II entails that p divides M;;. But
we are operating under the supposition that p divides M}, as well. This
implies that p divides 1, which is absurd (a contradiction). Hence the

prime p is outside II.

Hence for any such list II, there is a prime outside the list. That is, there are
infinitely many primes. QED
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“Astonishing” Logic Theorist
Proof @ Dawn of Al

(pV @) = ¢ axiom

(@ V —¢) — —¢ | substitution

(¢ — —¢) — ¢ | a “replacement rule”
(A — —A) — —A | substitution

-0 DN =

At dawn of Al: 10 seconds.

Al of today, e.g. PC provability oracle in
HyperSlate®, vanishingly small amount of time.



“Universal
Computational

Logic Theorist

(birth of modern logicist Al)

2023

Investigation
of the Laws
of Thought

Leibniz

/

Organon

IFLAI2 @ RPI




“Universal
Computational

Logic Theorist

(birth of modern logicist Al)

Investigation
of the Laws
of Thought

Leibniz

/

Organon

IFLAI2 @ RPI




“Universal
Computational

Logic Theorist

(birth of modern logicist Al)

2023

Leibniz

Organon

/ IFLAI2 @ RPI



“Universal
Computational

Logic Theorist

(birth of modern logicist Al)

Leibniz

Organon

/ IFLAI2 @ RPI



“Universal
Computational

Leibniz

/

Organon

Logic Theorist

(birth of modern logicist Al)

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



“Universal
Computational

Leibniz

/

Organon

Entscheidungsproblem

ic Theorist

f modern logicist Al)

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



“Universal
Computational

Leibniz

/

Organon

7

Entschei&ungsproblem

L@ic Fheorist

bf mgdern logicist Al)

Investigation
of the Laws
of Thought

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



“Universal
Computational

Leibniz

/

Organon

7

Entschei&ungsproblem

L@ic Fheorist
(birtymbf mgdern logicist Al)

44444

Investigation
of the Laws
of Thought

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



“Universal
Computational

Leibniz

/

Organon

7

Entschei&ungsproblem

L@ic Fheorist
(birtymbf mgdern logicist Al)

44444

Investigation
of the Laws
of Thought

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



Frege

“Universal
Computational

7

Entschei&ungsproblem

L@ic Fheorist
(birtymbf mgdern logicist Al)

«««««

Investigation
of the Laws
of Thought

Leibniz
Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs
in first-order logic (FOL).

Organon

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



7

Entschei&ungsproblem

“Universal
Computational

L@ic Fheorist
(birtymbf mgdern logicist Al)

Investigation
of the Laws
of Thought

Leibniz
Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs
in first-order logic (FOL).

Organon

Church

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



7

Entschei&ungsproblem

“Universal
Computational

L@ic Fheorist
(birtymbf mgdern logicist Al)

44444

Investigation
of the Laws
of Thought

Leibniz
Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs
in first-order logic (FOL).

Organon

IFLAI2 @ RPI

Church

wo > —

— C 0o S

= 2

VX



“Universal
Computational

7

Entschei&ungsproblem

L@ic Fheorist
(birtymbf mgdern logicist Al)

Investigation
of the Laws

of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs
in first-order logic (FOL).

Organon

Church

IFLAI2 @ RPI

wo > —

— C 0o S

= 2

VX



7

Entschei&ungsproblem

“Universal
Computational

Investigation

of the Laws
of Thought

Leibniz
Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs
in first-order logic (FOL).

Organon

Church

L

(bir b

Turing

sic Yheorist

bdern logicist Al)

T

Post

IFLAI2 @ RPI

Here’s what a computer is,
and given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

wo > —

— C 0o S

= 2

t
Y
?



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

input output




First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(KANA)— A

input output




First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(KANA)— A

input output




First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(KANA)— A

input output




First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(KANA)— A

input output




First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(KNA)— A Yes, proof

>

input output




First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(KNA)— A Yes, proof

> >

input output

Hard!! — for apparently no polynomial-time algorithm for this!



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

input output

Hard!! — for apparently no polynomial-time algorithm for this!



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(K = A)N—-A) = oK

>

input output

Hard!! — for apparently no polynomial-time algorithm for this!



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

((K—)A)/\—lA) — K

>

input output

Hard!! — for apparently no polynomial-time algorithm for this!



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(K = A)N—-A) = oK

>

input output

Hard!! — for apparently no polynomial-time algorithm for this!



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(K = A)N—-A) = oK

>

input output

Hard!! — for apparently no polynomial-time algorithm for this!



First, the Theoremhood Decision Problem
(THEOREMpc)
for the Propositional Calculus

(K = A)AN—-A) - K Yes, proof

> >

input output

Hard!! — for apparently no polynomial-time algorithm for this!



And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)

input output




And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)

Llama(larry) — Jx(Llama(x))

>

input output




And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)

Llama(larry) — Jz(Llama(x))

>

input output




And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)

Llama(larry) — Jx(Llama(x))

>

input output




And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)

Llama(larry) — Jx(Llama(x))

>

input output




And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)

Llama(larry) — Jx(Llama(x)) Yes, proof

> >

input output




And now, the Theoremhood Decision Problem,
.e., the Entscheidungsproblem,
(THEOREMFoL)
for First-Order Logic (FOL)

Llama(larry) — Jz(Llama(z)) Yes, proof

> >

input output

Not just hard: impossible for a (and this
needed to be invented in the course of
clarifying and solving the problem)
standard computing machine.
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Some Disastrous Consequences ...



Disastrous Consequence #1:
Mindless Procedure is Venerated & Pushed



Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

ruunoml thinking
builds on the power and
limits of computing
processes, whether they are exe-
cuted by a human or by a
machine. Computational
methods and models give us
the courage to solve prob-

lems and design systems that no one of us would
be capable of tackling alone. Computational chink-

ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arichmetic, we should add compu-
tational thmlong to every child’s analytical abiliry.
Just as the printing press facilitated the spread of the
three Rs, what is appropnzmly incestuous about this
vision is that computing and computers facilitate the
spread of compurational thinking.

Compurational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Compurtational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science.

Having to solve a partcular problem, we might
ask: How difficult is it to solve? and Whar's the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

cisely. Stating the difficulty of a problem accounts
for the underlying power of the machine—the com- |
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment.

In solving a problem efficiently, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
twcsamallowcd.Comptmnomlthmlnngumfor

ing a seemingly difficult problem into one we
kmwhawmsdvc.pednpsbymdmmn.anbcd—
dmg,tmnsformmon.orsnmxﬂanon.
is parallel ltxsnmapttnngoodcsdan
anddatzzsoodc.ltrstyptcbcdnngasthcgmcd
ization of dimensional analysis. It is recognizing

both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It

urcmgnmngbodxthccostandpawcrofmdm

addressing and procedure call. It is
gram not just for correctness and effici butfor

aesthetics, and a system’s design for simplicity and
clegance.

Compurational is using abstraction and
decomposition when a large complex task
ordmgxmgalargcoompl:xsymlusscpnrxm
of concerns. ltlschoosmgmapptopmmxptumu-
tion for a problem or the relevane aspects
of a problem to make it ractable. It is using invasi-
ants to describe a system’s behavior and
declaratively. It is having the confidence we can
safely use, modify, mdmﬂuaw:alugc::{b
system without understanding its every Itis
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In solving 2 problem efficiently, we might further
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mulating a secmingly difficule problem inco one we
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Teach computer programming!
(procedural, o-o, functional)

Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

2 nouns (07, ‘17),

3 verbs (‘move’, ‘print’, ‘halt’),

3 grammar rules (sequence, selection, repetition),
and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.
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In solving 2 problem efficiently, we might further
ask whether an approximate solution is good
cnough, whether we can use randomization to our
advantage, and whether false positives or false nega-
cives are allowed. Computarional thinking is refor-

? gly difficul problem inco one we

addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency but for
aesthetics, and a systems design for simplicity and
clegance.

<

lems, designing sy d understanding human
behavior, by drawing on the concepes fundamental
t© computer science. Compurational thinking
includes 2 range of mental tools thar reflect the
breadh of the field of computer science.

Having to solve a particular problem, we might
ask: How difficul s i to solve? and What’s the best
way to solve it? Computer seience rests on solid the-
orctical underpinnings to answer such questions pre-

chink ing abstraction and
docomposirion when arcacking 2 large complex task
or designing a large complex system. I is separacion
of concerns. It s choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of 2 problem to make it wractable. It is using invari-
ants o describe 2 systems behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence 2 large complex
sysiem without understanding irs cvery dewail. It is

.

Teach computer programming!
(procedural, o-o, functional)

Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

2 nouns (07, ‘17),

3 verbs (‘move’, ‘print’, ‘halt’),

3 grammar rules (sequence, selection, repetition),
and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

— Rapaport, “phics" book



Disastrous Consequence #2:
Impenetrable, Dangerous Code
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w g Software Apocalypse

A small group of programmers wants to change how we code—before catastrophe strikes.

In September 2007, Jean Bookout was driving on the highway with her best

friend in a Toyota Camry when the accelerator seemed to get stuck. When she
took her foot off the pedal, the car didn’t slow down. She tried the brakes but
they seemed to have lost their power. As she swerved toward an off-ramp
going 50 miles per hour, she pulled the emergency brake. The car left a skid
mark 150 feet long before running into an embankment by the side of the

road. The passenger was killed. Bookout woke up in a hospital a month later.

The incident was one of many in a nearly decade-long investigation into claims
of so-called unintended acceleration in Toyota cars. Toyota blamed the
incidents on poorly designed floor mats, “sticky” pedals, and driver error, but
outsiders suspected that faulty software might be responsible. The National
Highway Traffic Safety Administration enlisted software experts from NASA to
perform an intensive review of Toyota’s code. After nearly 10 months, the
NASA team hadn’t found evidence that software was the cause—but said they

couldn’t prove it wasn’t.

It was during litigation of the Bookout accident that someone finally found a
convincing connection. Michael Barr, an expert witness for the plaintiff, had a
team of software experts spend 18 months with the Toyota code, picking up
where NASA left off. Barr described what they found as “spaghetti code,”
programmer lingo for software that has become a tangled mess. Code turns to
spaghetti when it accretes over many years, with feature after feature piling on
top of, and being woven around, what’s already there; eventually the code

becomes impossible to follow, let alone to test exhaustively for flaws.
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road. The passenger was killed. Bookout woke up in a hospital a month later.

The incident was one of many in a nearly decade-long investigation into claims

of so-called unintended acceleration in Toyota cars. Toyota blamed the
incidents on poorly designed floor mats, “sticky” pedals, and driver error, but
outsiders suspected that faulty software might be responsible. The National
Highway Traffic Safety Administration enlisted software experts from NASA to

perform an intensive review of Toyota’s code. After nearly 10 months, the
NASA team hadn’t found evidence that software was the cause—but said they

couldn’t prove it wasn'’t.

It was during litigation of the Bookout accident that someone finally found a
convincing connection. Michael Barr, an expert witness for the plaintiff, had a
team of software experts spend 18 months with the Toyota code, picking up
where NASA left off. Barr described what they found as “spaghetti code,”
programmer lingo for software that has become a tangled mess. Code turns to
spaghetti when it accretes over many years, with feature after feature piling on
top of, and being woven around, what’s already there; eventually the code

becomes impossible to follow, let alone to test exhaustively for flaws.



Disastrous Consequence #3:
Black-Box Machine-Learning
Machines that Don’t Learn
Anything At All



Since Plato:

Knowledge is justified, true belief — where
justifications (arguments and proofs) are
necessarily based on logic.



But Plato has been trampled.

Do Machine-Learning Machines Learn?

Selmer Bringsjord and Naveen Sundar Govindarajulu and Shreya Banerjee and
John Hummel

Abstract We answer the present paper’s title in the negative. We begin by introduc-
ing and characterizing “real learning” (R L) in the formal sciences, a phenomenon
that has been firmly in place in homes and schools since at least Euclid. The defense
of our negative answer pivots on an integration of reductio and proof by cases, and
constitutes a general method for showing that any contemporary form of machine
learning (ML) isn’t real learning. Along the way, we canvass the many different con-
ceptions of “learning” in not only Al, but psychology and its allied disciplines; none
of these conceptions (with one exception arising from the view of cognitive devel-
opment espoused by Piaget), aligns with real learning. We explain in this context by
four steps how to broadly characterize and arrive at a focus on RL.

Selmer Bringsjord

Rensselaer Polytechnic Institute, 110 8th Street Troy, NY USA 12180, e-mail:
selmerbringsjord@gmail.com

Naveen Sundar Govindarajulu

Rensselaer Polytechnic Institute, 110 8th Street Troy, NY USA 12180, e-mail:
Naveen.Sundar.G@gmail.com

Shreya Banerjee

Rensselaer Polytechnic Institute, 110 8th Swreet Troy, NY USA 12180, e-mail:

shreyabbaner jee@gmail.com

John Hummel
901 West Illinois Street, Urbana, IL 61801, e-mail: jehummel@illinois.edu

T ——— —————

Do Machine-Learning Machines Learn? 17

8 Appendix: The Formal Method

The following deduction uses fonts in an obvious and standard way to sort between
functions (f), agents (a), and computing machines (m) in the Arithmetical Hierar-
chy. Ordinary italicized Roman is used for particulars under these sorts (e.g. f is
a particular function). In addition, ‘C’ denotes any collection of conditions consti-
tuting jointly necessary-and-sufficient conditions for a form of current ML, which
can come from relevant textbooks (e.g. Luger, 2008; Russell and Norvig, 2009) or
papers; we leave this quite up to the reader, as no effect upon the validity of the
deductive inference chain will be produced by the preferred instantiation of ‘C.” It
will perhaps be helpful to the reader to point out that the deduction eventuates in
the proposition that no machine in the ML fold that in this style learns a relevant
function § thereby also real-learns f. We encode this target as follows:

(*) —3m 3f (¢ := MLIearns(m,f) A y := RLlearns(m, f) A Cy (m, ) H* (ci’)}—(ciii),, (m, )]

Note that (x) employs meta-logical machinery to refer to particular instantiations
of C for a particular, arbitrary case of ML (¢ is the atomic sub-formula that can be
instantiated to make the particular case), and particular instantiations of the triad
(ci)—(ciii) for a particular, arbitrary case of RL (y is the atomic sub-formula that
can be instantiated to make the particular case). Meta-logical machinery also allows
us to use a provability predicate to formalize the notion that real learning is produced
by the relevant instance of ML. If we “pop” ¢/y to yield ¢'/y’ we are dealing with
the particular instantiation of the atomic sub-formula.

The deduction, as noted in earlier when the informal argument was given, is
indirect proof by cases; accordingly, we first assume —(x), and then proceed as
follows under this supposition.

(1) [Vf,a [f: N> N — (RLlearns(a,f) — (i)=(iii))] |Def of Real Learning
(2) |MLlearns(m, f) A RLlearns(m, f) A\ f : N+ N |supp (for 3 elim on (%))
(3) [Vm,f[f: N N — (MLlearns(m,f) <> C(m,f))] |Def of ML
@) |Vf [f: N+ N = (TurComp(f) V TurUncomp(f) )| |theorem
(5) |TurUncomp(f) supp; Case 1
(6) [=Im I f[(f: N+ NATurUncomp(f) AC(m,f)] [theorem
[ (7) |3 m MLlearns(m, f) (6), (3)
[ (8) L (7, (2)
(9) |TurComp(f) supp; Case 2
~|(10)|Cyr (m, f) (2),(3)
slan (ci')—(ciii)wr (m, f) from supp for 3 elim on (x) and provability
~(12) —\(ci')—(ciii)u,: (m, f) inspection: proofs wholly absent from C
S(3)| L (11),(12)
S(14) L reductio; proof by cases
1 — B

http://kryten.mm.rpi.edu/SB_NSG_SB_JH_ DoMachine-LearningMachinesLearn_preprint.pdf
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Disastrous Consequence #4:
Animal-level Al; Al Chained to Earth



The Canyon of Discontinuity
(or Darwin’s Dread)
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Relations and Functions!
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ivano/SemBabble_old/LogicSeminar_| 5VW/Material/Partee_2013_History-of-Quantifiers.pdf.)

(Interesting paper:
http://idiom.ucsd.edu/~
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Karkooking Problem ...

Everyone karkooks anyone who karkooks someone.
Alvin karkooks Bill.

Can you infer that everyone karkooks Bill?

ANSWVER:

JUSTIFICATION:



Relations and Functions!

Quantification!

Recursion!
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But what are the three things, in
The Terrific Triad, exactly?



Logic ...



The Universe of Logics

2 = first-order logic

Ly DCECT

2y = zeroth-order logic

Deductive
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Al ...



Al:
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Attificial intelligence (AI) is the field devoted to building artificial animals (or at least artificial
creatures that — in suitable contexts — appear to be animals) and, for many, artificial persons (or
at least artificial creatures that — in suitable contexts — appear to be persons).!'! Such goals
immediately ensure that Al is a discipline of considerable interest to many philosophers, and this
has been confirmed (e.g.) by the energetic attempt, on the part of numerous philosophers, to
show that these goals are in fact un/attainable. On the constructive side, many of the core
formalisms and techniques used in AI come out of, and are indeed still much used and refined in,
philosophy: first-order logic and its extensions; intensional logics suitable for the modeling of
doxastic attitudes and deontic reasoning; inductive logic, probability theory, and probabilistic
reasoning; practical reasoning and planning, and so on. In light of this, some philosophers
conduct Al research and development as philosophy.
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Al:

A (Turing-level) entity that computes.
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(Pure General) Logic Programming ...



P L

L= (L,T) : =

R : (P,q) — (YN|U, 8, 7()|x(s))
C 7T(S)|CM(S) — <Y|N‘U75>



degree of “confidence”
program
proof(s)
QUeL/‘ ]P) L argument(s)
. q L /
L= (L

T) 7
K H <Y‘N‘U 5 W(S)‘OK(S)>
C : 7T(S)|CM(S) — (Y|N|U, 6)




For just “logic programming,” and a vintage approach that
goes back to circa 1970, restrict this to a FOL or a fragment
thereof, and use resolution as the only inference schema.

degree of “confidence”
program
proof(s)

P I rgumert(s
q L

query

£ — L,I 4
< K > — <Y‘N‘U 5 W(S)‘OK(S)>
C ' 7T(S)|CM(S) — <Y|N‘U 5>

reasoner

checker



For just “logic programming,” and a vintage approach that
goes back to circa 1970, restrict this to a FOL or a fragment
thereof, and use resolution as the only inference schema.
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Resurrection of
The TerrificTriad



The Triad Resurrected & Rebuilt, & Better
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Pure General Logic Programming
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