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Mechanics ...

Access codes available if not registered!

Might find helpful the “Getting Off The
Ground ...” tutorial, available by link in
“Tutorials” section of our course web page.

Important: Your “University ID”
as a student @ RPI is you RIN #.

Important: | browser, | window w/ tabs, &
immaculate housekeeping (versioning up-to-date eg).

As part of review, a personalized problem should now be
in your HG account & due by COC today. Try it! In fact
let’s look @ mine now, together and have a tutorial ...
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'hings X and y, along with the father of X,
share a certain property (and x likes y).

FOL 3Jz[Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which
s also a llama), and whose father is a llama too.
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ais allama, as is b, a likes b, and the father of g Is a llama as well.
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In extensional logics, what is denoted is conflated with meaning (the latter being naively
compositional), but intensional attitudes like believes, knows, hopes, fears, etc cannot be
represented and reasoned over smoothly (e.g. without fear of inconsistency rising up).
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In intensional logics, meaning and designation are separated, and compositionality is abandoned.
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For Brave Adventurers

“Bverything smart knows that everything tinks anything
that tinks something identical with something.”

“Blinky 1s smart.”
T herefore:

“Bverything tinks anything that tinks
something identical with something.”
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Propositional attitudes and causation

Konstantine Arkoudas and Selmer Bringsjord

Cognitive Science and Computer Science Departments, RPI
arkouk@rpi.edu, brings@rpi.edu

[ [ )
A rko u d as K & B rl n S O rd ; Abstract. Predicting and explaining the behavior of others in terms of
) * ) *

mental states is indispensable for everyday life. It will be equally impor-
tant for artificial agents. We present an inference system for representing

‘ ‘ Y ° and reasoning about mental states, and use it to provide a formal analysis

of the false-belief task. The system allows for the representation of infor-

(2 O O 9) P ro P O S Itl O n a I mation about events, causation, and perceptual, doxastic, and epistemic
states (vision, belief, and knowledge), incorporating ideas from the event

calculus and multi-agent epistemic logic. Unlike previous Al formalisms,

hd * ’ ’ our focus here is on mechanized proofs and proof programmability, not
t It u e S a n a u S atl O n on metamathematical results. Reasoning is performed via relatively cog-
nitively plausible inference rules, and a degree of automation is achieved
1 Introduction
e . . . . . . - o .
[ Interpreting the behavior of other people is indispensable for everyday life. It is
an n Or‘ ' l a ’CS () ° ° something that we do constantly, on a daily basis, and it helps us not only to

make sense of human behavior, but also to predict it and—to a certain extent

by general-purpose inference methods and by a syntactic embedding of
the system in first-order ll)gi('.

to control it. How exactly do we manage that? That is not currently known,
h '//l . d /PR'CA' | 04 | 709 df but many have argued that the ability to ascribe mental states to others and to
ttp <I”>/'teﬂmmrple u W Sequentca C p reason about such mental states is a key component of our capacity to under-

stand human behavior. In particular, all social transactions, from engaging in

commerce and negotiating to making jokes and empathizing with other people’s
pain or joy, appear to require at least a rudimentary grasp of common-sense
psychology (CSP), i.e., a large body of truisms such as the following: When an
agent a (1) wants to achieve a certain state of affairs p, and (2) believes that
some action ¢ can bring about p, and (3) a knows how to carry out ¢; then,
ceteris paribus,! a will carry out ¢; when a sees that p, a knows that p; when a
fears that p and a discovers that p is the case, a is disappointed; and so on.
Artificial agents without a mastery of CSP would be severely handicapped in
their interactions with humans. This could present problems not only for artificial
agents trying to interpret human behavior, but also for artificial agents trying
to interpret the behavior of one another. When a system exhibits a complex
but rational behavior, and detailed knowledge of its internal structure is not

! Assuming that a is able to carry out ¢, that a has no conflicting desires that override

his goal that p: and so on.
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Humans Can Succeed

Neurobiologically normal, nurtured, educated,
and sufficiently motivated humans can correctly
answer any relevant query g for the infinite
progression, and prove that their answer is
correct. For the obvious subclass of queries
(the form of which appear in the box below),
they can prove and exploit the following lemma.

Lemma: Suppose FBT}, k € Z™, holds:;
(i.e. that level £ of FBT holds). Then, if k is even,
B>B, ...By ¢, where there are k + 1 iterated B;

operators; otherwise B1By ... B1By ¢, where there
again there are k + 1 iterated B; operators.




Passing to Probing Mastery
of the Specific Subclass

Experimenter to a: “At level k,
from which box will a; attempt to
retrieve the objects 0,! Prove it!”



Theoretical Machine Success on Infinite FBT!

Ok, so this logic machine exists in the
mathematical universe; but does there exist
an implemented machine with this power?



Theoretical Machine Success on Infinite FBT!

Ok, so this logic machine exists in the
mathematical universe; but does there exist
an implemented machine with this power?



Simulation Courtesy of ...

ShadowProver!
B




Level |

:name "Level 1: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Levell Belief: al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {
:P1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1)))

:P2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl))))))
:P3 (holds (In o bl) t1)
:C1l (Common! t@ (forall [?f ?t2 ?t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?tl1l ?t2))
(holds ?f ?t2))))

:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))
}

:goal (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3)))}



Level 2

{:name "Level 2: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Level2 Belief: a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"
:assumptions {
:P1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1))))

:P2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl)))))))

:P3 (holds (In o bl) t1)

:C1 (Common! t0O
(forall [?f ?t2 ?t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?tl1l ?t2))

(holds ?f ?t2))))
:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3))))}



Level 3

{:name "Level 3: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Level3 Belief: a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {

:P1 (Perceives! al t1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1)))))
:P2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl))))))))

:P3 (holds (In o bl) t1)
:C1 (Common! tO
(forall [?f ?t2 ?7t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?t1 ?t2))
(holds ?f ?7t2))))
:C2 (Common! t0 (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3)))))}



Level 4

{:name "Level 4: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Leveld4 Belief: a2 believes al believes a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {

:P1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1))))))
:P2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl)))))))))

:P3 (holds (In o bl) t1)

:C1 (Common! t0@
(forall [?f ?t2 ?t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?tl1 ?t2))

(holds ?f ?t2))))
:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3))))))}



Level 5

{:name "Level 5: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Level5 Belief: al believes a2 believes al believes a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {

:P1 (Perceives! al t1 (Perceives! a2 tl1 (Perceives! al tl1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 tl1 (holds (In o bl) t1)))))))
:P2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl))))))))))

:P3 (holds (In o bl) t1)

:C1 (Common! t0
(forall [?f ?t2 ?t2]

(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl1l) (< ?t1 ?t2))
(holds ?f 7t2))))

:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3)))))))}









Time (in seconds) to Prove

9

6.75

4.5

2.25

Level 1 Level 2 Level 3 Level 4 Level 5



Simulation of Level 5 in Real Time

/Library/Java/JavaVirtualMachines/jdk1.8.0_131. jdk/Contents/Home/bin/java ...
objc[16653]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java (0x102a2d4c@) and /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre/lib/libinstrument.dylib (0x102ab94e0)
- Level 5
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