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Part 1: Background



Pei Wang
● Contributor for the official Chinese 

translation of Godel-Escher-Bach as an 
undergraduate at Peking University 
while researching AI (1980s)

● Finished his PhD under Douglas 
Hofstadter at Indiana University (1995) 

● Founded the AGI Conference Series 
with Ben Goertzel (2008) 

● Founding Editor of the Journal of AGI 
(2011)



Timeline

2012

“Non Axiomatic Logic”

Builds up to NAL Level 9, adding support in 
NAL for Events, Goals, Tasks, Operations.

2023

Still in Active Research and Development
~300 items on GS with NAL as title or topic
~400 items on GS with NARS as title or topic

2nd only paradigm to Hutter’s AIXI in AGI circles. 
Far more pragmatic than AIXI. 

1995

Wang’s Dissertation

Wang publishes his dissertation, 
“Non-Axiomatic Reasoning System”, Providing 
the first complete account of basic NAL built 
up over the early 1990s. Builds up to NAL 
Level 3.

2006

“Rigid Flexibility, The Logic Of Intelligence”

Formalizes NAL, provides better comparisons 
with other systems. 



Features of Non-Axiomatic Logic
● Term Based (Syllogistic/Aristotelian) 

○ Propositions take the form of relations between two 
objects, a subject and object (terms) 

● Fuzzy
○ Statements are not just true or false but can take 

real numbered truth values between zero and one. 
○ In NAL truth value corresponds to an agents belief 

in the truth of the statement. 
● Non-monotonic (Defeasible)

○ Allows retraction of past inferences.
○ Can handle inconsistent information and perform 

belief revision over time as knowledge improves.



Levels of Non-Axiomatic Logic
● NAL 1: Fuzzy non-monotonic inheritance logic on atoms 
● NAL 2: More expressive term relations (similarity, properties)
● NAL 3: Composite Terms 
● NAL 4: Arbitrary relations 
● NAL 5: Higher order reasoning on terms with predicates as terms. 
● NAL 6: Quantification
● NAL 7: …

Each Level has a corresponding “Idealized Logic” removing non-monotonicity and 
fuzziness. 



Part 2: Wang’s Inheritance Logic (IL-1)



Basic Aristotelian Term Logic
An assertion is a statement that is true or false (affirmed or denied).  

 James is Fat, Cats are green, Selmer is not an Elephant

Each assertion contains a subject and a predicate 

A term is either a subject or predicate of an assertion:

Terms from the assertions: {James, Fat, Cats, Green, Selmer, Elephant}



Basic Aristotelian Term Logic (Cont.)
A term is either universal or individual

Individuals are objects, universals are categories or sets of individuals.

The subject of an assertion of an can either be individual or universal, while the 
predicate must be a universal. 

James is Fat, Cats are green, Selmer is not an Elephant

Individuals: {James, Selmer}

Universals: {Cat, Fat, Green, not Elephant}



Inheritance Logic (IL-1)
IL-1 is a term logic, who’s only assertions are inheritance relation (→). 

Assertions in IL-1 are called statements and take the form:

Subject → Predicate

This is read as 

(1) “Subject is a special type of Predicate” 

(2) “Predicate is a generalization of Subject”



Examples of IL-1 statements

Robin → Bird (Robins are a special case of birds)

Water → Liquid (Water is a type of liquid)

Bird → Animal (Bird is a special case of animal)



Semantic Properties of → 

Wang defines the inheritance relation to be reflexive and transitive. From this we 
can derive two theorems concerning truth in the meta-logic of IL-1. 

(Reflexivity of →) 

For any term T: T → T is true

(Transitivity of →) 

For any terms T1, T2, T3, if T1 → T2 and T2 → T3 are true then T1 → T3 is true

A tautology in IL-1 is any statement in the form T → T

Defines a weak semantics, but so far the class of true statements is quite boring 
and we don’t have anything we can use our transitivity theorem with. 



Semantics of IL-1 
Wang’s Experience Grounded Semantics
Semantics of classical logic typically is only concerned with discovering the truth 
value of statements. 

Experience Grounded Semantics of IL-1 care BOTH about defining truth of 
statements AND the meanings of terms within those statements.

Example: given the statement Bird → Animal we would like to know not only if this 
statement is true, but would also like to know what a bird and what an animal is.

*This only makes sense in the context of knowledge we ground semantics in this 
prior knowledge. 



Semantics of IL-1: Experience and Knowledge 
An experience is a finite non-empty set of statements in IL-1 that does not include 
any tautologies. We will refer to this experience as K. For example:

K = {robin → bird, bird → animal, water → liquid}

knowledge is defined as the transitive closure (with respect to →) of an 
experience not containing any tautologies, we use * to denote this transformation.

K* = {robin → bird, bird → animal, water → liquid, robin → animal}

Note that if we have K2 = {T1 → T2, T2 → T1} than K2 = K2*



Semantics of IL-1: Truth of Statements

Truth is then defined with respect to the knowledge derived from an experience. 

A statement φ in IL-1 is said to be true given an experience K iff φ is in K* or it is a 
tautology, otherwise it is false. 

In metalogic we can express this semantic definition of truth as:

K ⊨IL φ ≝ (φ ∊ K*) v (ƎT: φ = (T→T))

This dichotomy in the definition of truth leads to two types of truth

● synthetically true statements derived from experience (φ ∊ K*)  
● analytically true statements considered to be “True by definition”               

(ƎT: φ = (T→T)). 



Semantics of IL-1: Meaning of Terms 
The meaning of a term is defined as its relation with other terms according to 
experience.

Let V(K) be the set of terms in an experience K. 

Ex. V({T1 → T2, T2 → T3}) = {T1, T2, T3}

The extension of a term T with respect to K is {x ∊ V(K) | x → T ∊ K} ∪ {T}. 

The intention of a term T with respect to K is {x ∊ V(K) |  T → x ∊ K} ∪ {T}. 

“Known specializations of T in K” vs “Known generalizations of T in K”

Wang asserts that the meaning of a term IS its intension and extension. In NAL-1, 
meaning of terms is used to help derive fuzzy truth values. 

 



Inference Rule of IL-1
The single inference rule of IL-1 is “inheritance deduction”. (Transitivity of →)

It should be clear that we have a metalogical completeness result for semantic 
and syntactic truth in IL-1. (Note that we assume T→T is true for all T for ⊢IL )

K ⊨IL φ ⇔ K ⊢IL φ

Can also be called a syllogism rather than inference rule, conforms to Aristotle’s 
definition. 



A Brief Stop at IL-5: 
Statements as Terms



IL-5 Syntax

 

IL-5 lets us make basic logical statements about IL-1 statements right in the logic, 
by considering some statements as terms. Adds Copulae for implication (not 
material implication) and equivalence. 

 



IL-5 Semantics: Desires for Implication
Formally we want to define semantics of ⇒ to function as it does in natural 
deduction, such that (φ ⇒ ψ) is true only if you can derive ψ from φ in a finite 
number of steps. 

K ⊨IL(φ ⇒ ψ) ⇔ K ∪ {φ} ⊢IL ψ 

Since IL is a term logic we also want the restriction that it is impossible to derive    
φ ⇒ ψ unless they are related in content, this rules out material implication. 



IL-5 Semantics: 
Solution: Borrow from our definition of inheritance. Define semantics of implication 
with respect to experience. If the sufficient conditions for φ are a subset of the 
sufficient conditions for ψ then φ ⇒ ψ. Forces φ, ψ to be derivable and “related”. 

The sufficient conditions of a of a term T with respect to K is defined

TS
K = {x ∊ V(K) | x ⇒ T ∊ K} 

The necessary conditions of a term T with respect to K is is defined

TN
K = {x ∊ V(K) |  T ⇒ x ∊ K}

Then assuming φ,ψ ∊ K we can define implication as

K ⊨IL(φ ⇒ ψ) ≝ φS
K

 ⊆ ψS
K   or    K ⊨IL(φ ⇒ ψ) ≝ ψN

K  ⊆ φN
K



Partial Semantics of IL-5
Function exactly how they do in propositional logic, semantic entailment can be 
seen as a recursively defined proposition down to terminal cases, Atomic Terms, 
inheritance, and implication.

K ⊨ILᆨφ ≝ ᆨK ⊨ILφ

K ⊨IL(φ ∧ ψ) ≝ (K ⊨ILφ) ∧ (K ⊨ILψ)

K ⊨IL(φ ∨ ψ) ≝ (K ⊨ILφ) ∨ (K ⊨ILψ)

 K ⊨IL (φ → ψ) ≝ (φ → ψ) ∊ K* ∨ φ = ψ (Where K* = transitive closure of K under →)

 K ⊨IL(φ ⇒ ψ) ≝ (φ ⇒ ψ) ∊ K†  ∨ φ = ψ (Where K† = transitive closure of K under ⇒)



Quantification with IL-6



Quantifiers in Term Logic,
The Square of Opposition

Four types of assertions. Four types of relationships 
between them. 

Contradictory: Can not both be true

Subaltern: A ⇒ I, ᆨI ⇒ᆨA 

Contrary: If one is true the other must be false, can 
both be false. 

Subcontrary: If one is false the other must be true, can 
both be true. 



Quantification in IL-6
Can’t quantify like FOL, IL-5 has already built in the ability to represent other 
statements and predicates things that traditionally minimally need Higher Order 
Logic (HOL) to quantify over.

 

IL-6 introduces named term variables for dependent and independent terms. 
Roughly correspond to existentially and universally quantified variables. 

This allows us to mimic the behavior of some first order quantification, and allows 
us to represent the classic Aristotelian quantifiers. 

 



Getting to the Aristotelian Quantifiers 
Two basic binary relations between sets we may wish to know about for 
extensions and intentions: Inclusion and common element. 

● Inclusion: “If a term is in the extension of S than it is in the extension of P”

(? → S) ⇒ (? → P)

● Common Element: “There is a term in both the extension of S and the 
Extension of P”

(? → S) ∧ (? → P)

Both of these require a notion of variables. 

But quantification is being used in different senses… 



IL-6 Term Variables
An independent variable term is a term prefixed with a # that represents any 
arbitrary unspecified term under restriction. (Roughly represents a universally 
quantified variable)

#x → dog

#x is an arbitrary restricted term such that dog generalizes it (dog is in its intention)

A dependent variable term is a term prefixed with a # that represents a certain term 
under restriction followed by (). (Roughly represents an existentially quantified 
variable).

#x() → dog

#x() is a certain term such that dog generalizes it 



Quantifiers
(#x → S) ⇒ (#x → P)  truth value corresponds to the A quantifier, All S are P.

(#x() → S) ∧ (#x() → P) truth value corresponds to the I quantifier, Some S are P

We can use NOT to construct E and O

(#x → S) ⇒ (ᆨ(#x → P))          E quantifier, No S are P

(#x() → S) ∧ (ᆨ(#x() → P))      O quantifier, Some S are not P

 



Differences Between FOL Variables and IL Variables 
● In IL, variables represent a term under a restriction, while in FOL, they 

represent a term in the entire domain. 

● IL variables range over terms, thus can be either instances or properties 
(universals) normally need HOL to do this.

● In IL variables relate two or more terms. Independent variables can only 
appear on two sides of an implication or equivalence statement. Dependents 
can only appear on two sides of a conjunction. 

 



Fin


