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Q* Is the human mind more powerful than
the class of standard computing machines?

\(= finite machines)/

(= Turing machines)

(= register machines)




Godel’s Either/Or

“[E]ither ... the human mind (even within the
realm of pure mathematics) infinitely surpasses the
power of any finite machine, or else there exist

absolutely unsolvable diophantine problems.”
— Godel, 1951, Providence RI




PT as a Diophantine Equation

Equations of this sort were introduced to you in middle-school, when you were asked
to find the hypotenuse of a right triangle when you knew its sides; the familiar equation,
the famous Pythagorean Theorem that most adults will remember at least echoes of
into their old age, is:

(PT) a*+b*=c?
and this is of course equivalent to
(PTY a*+b*>—=c?=0,

which is a Diophantine equation. Such equations have at least two

unknowns (here, we of course have three: a, b, ¢), and the equation is solved when
positive integers for the unknowns are found that render the equation true. Three
positive integers that render (PT") true are

a=4,b=3,¢c=25.

It Is mathematically impossible that there is a finite computing machine capable of
solving any Diophantine equation given to It as a challenge.



... which means that the 10th of Hilbert’s Problems is settled:

Article  Talk Read Edit View history | Search Wikipedia Q

Hilbert's problems

From Wikipedia, the free encyclopedia

Hilbert's problems are twenty-three problems in mathematics published by German mathematician David Hilbert in 1900. The problems were all
unsolved at the time, and several of them were very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13,
16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 in the Sorbonne. The complete
list of 23 problems was published later, most notably in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American
Mathematical Society.!]
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Background

problem?” 1In his lecture, Gédel precisely defines diophantine problems,
but we don’t need to bother with all of the details here; we only need to
appreciate the general structure of such a problem, and that can be achieved
quickly as follows, given what was introduced in Chapter 2.

Each diophantine problem has at its core a polynomial P whose variables
are comprised by two lists, x1,z2,...,z, and y1,y2,...,ym; all variables
must be integers, and the same for subscripts n and m. To represent a
polynomial in a manner that announces its variables, we can write

P(-’Elv-rQa ey Ty Y1, Y2, - - 7y_])

But Godel was specifically interested in whether, for all integers that can be
set to the variables x;, there are integers that can be set to the y;, such that
the polynomial equals 0. To make this clearer, first, here are two particular,
simple equations that employ polynomials that are both instances of the
needed form:

El 3z—-2y=0
E2 222—-y=0

All we need to do now is prefix these equations with quantifiers in the pattern
Godel gave. This pattern is quite simple: universally quantify over each x;
variable (using the now-familiar V), after which we existentially quantify
over each y; variable (using the also-now-familiar 3). Thus, here are the
two diophantine problems that correspond to the pair E1 and E2 from just
above:

P1  Is it true that Va3y(3z — 2y = 0)7
P2  Isit true that Va3y2z? — y = 0?7
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1. Diophantine Sets. In this article the usual problem of Diophantine equations
will be inverted. Instead of being given an equation and seeking its solutions, one
will begin with the set of “‘solutions’’ and seek a corresponding Diophantine equation.
More precisely:

DEFINITION. A set S of ordered n-tuples of positive integers is called Diophantine
if there is a polynomial P(x,, -+, X,, V1, Ym), Where m = 0, with integer coefficients
such that a given n-tuple (x,,--,x,) belongs to S if and only if there exist positive
integers y, -+, y,, for which

This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM
All use subject to JSTOR Terms and Conditions

1973] HILBERT’S TENTH PROBLEM IS UNSOLVABLE 235

P(xl;"':xmyls"'yym) =0.

Borrowing from logic the symbols ‘“3”* for “‘there exists’’ and ‘‘<>>’ for “‘if and
only if”’, the relation between the set S and the polynomial P can be written succinctly
as:

<x19 "'1xn> ES¢(3 V1s "',ym) [P(xl, s Xps Y1y "';ym) = 0];

or equivalently:

S = {<x1""»xn>,(aylr"')ym) [P(xlr"'rxmyl:"'rym) = 0]}-

Note that P may (and in non-trivial cases always will) have negative coefficients.
The word ‘‘polynomial” should always be so construed in the article except where
the contrary is explicitly stated. Also all numbers in this article are positive integers
unless the contrary is stated.
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Notice that this is a perfect fit with
how we used formal logic to present
and understand the Polynomial
Hierarchy and the Arithmetic Hierarchy.
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Diophantine “Threat”

HyperSlate® | & Diophantine1 [HYPERLOG]: Saved with @3 symbols.

assume

myfuncixy) & ((3*x) - (2*y))

from {A POLYNOMIAL FUNCTION}

COMPUTE

8 = myfunc(4, 2) }

from {APOLYNOMIAL FUNCTION}
COMPUTE

[ 8 = myfunc(l, 5) ]

from {APOLYNOMIAL FUNCTION}

COMPUTE

1=myfunc(1, 1)
from {APOLYNOMIAL FUNCTION}

assume

xminusy(x,y) » (x - y)

vx: 3y: 0 = myfunc(x, y) |
from {A POLYNOMIAL FUNCTION} B 3x 3y: 1 = myfunc(x, y)
from {APOLYNOMIAL FUNCTION}

HYPERLOG +

COMPUTE COMPUTE

0 = xminusy(5, 5) ] [ zero?(xminusy(5, 5)) ]

from {10} from {10}

HYPERLOG

3x: zero?(xminusy(5, x))
from {10}
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Earlier Godelian Argument for the “No.”
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Abstract

Do human persons hypercompute? Or, as the doctrine of computationalism holds,
are they information processors at or below the Turing Limit? If the former,
given the essence of hypercomputation, persons must in some real way be
capable of infinitary information processing. Using as a springboard Godel’s
little-known assertion that the human mind has a power “converging to infinity”,
and as an anchoring problem Rado’s [T. Rado, On non-computable functions,
Bell System Technical Journal 41 (1963) 877-884] Turing-uncomputable “busy
[ Table 1 beaver” (or X) function, we present in this short paper a new argument that, in
fact, human persons can hypercompute. The argument is intended to be
formidable, not conclusive: it brings Gédel’s intuition to a greater level of
precision, and places it within a sensible case against computationalism.

Figures (1)
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Will Al Match (Or Even Exceed) Human Intellligence?

No. Yes.

I: "Negative” enumerative induction for m3year (Al = HI @ year,)

from Al # HI@year g A ... AAl # HI@year, .

2: There is no absolutely unsolvable-for-humans Diophantine problem.
Hence as Godel explained, we get “No.”

3. Amundsen and The Explorer Argument.

4: And finally, the sledgehammer is used: phenomenal consciousness.







Og pa det glade
merknaden for Selmer
(men ikke for Bill), er
forelesningene vdre nd
fullfert .. men ...
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Med nok penger, kan
logikk lese alle problemer.



