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Automating Godel’s Ontological Proof of God’s Existence
with Higher-order Automated Theorem Provers

Christoph Benzmiiller! and Bruno Woltzenlogel Paleo’

Abstract. Kurt Godel’s ontological argument for God’s existence
has been formalized and automated on a computer with higher-order
automated theorem provers. From Godel’s premises, the computer
proved: necessarily, there exists God. On the other hand, the theorem
provers have also confirmed prominent criticism on Godel’s ontolog-
ical argument, and they found some new results about it.

The background theory of the work presented here offers a novel
perspective towards a computational theoretical philosophy.

1 INTRODUCTION

Kurt Godel proposed an argumentation formalism to prove the ex-
istence of God [23, 30]. Attempts to prove the existence (or non-
existence) of God by means of abstract, ontological arguments are
an old tradition in western philosophy. Before Godel, several promi-
nent philosophers, including St. Anselm of Canterbury, Descartes
and Leibniz, have presented similar arguments. Moreover, there is
an impressive body of recent and ongoing work (cf. [31, 19, 18] and
the references therein). Ontological arguments, for or against the ex-
istence of God, illustrate well an essential aspect of metaphysics:
some (necessary) facts for our existing world are deduced by purely
a priori, analytical means from some abstract definitions and axioms.

What motivated Godel as a logician was the question, whether it
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Either a property or its negation is positive, but not both:
Vo[P(=¢) = =P(¢)]
A property necessarily implied by a positive property is posi-
tive: YOVYL(P(4) A OVx[p(x) D Y(x)]) O P(Y)]
Positive properties are possibly exemplified:
Vo[ P(¢) > OIxg(x)]
A God-like being possesses all positive properties:
G(x) = VP[P(¢) D ¢(x)]
The property of being God-like is positive: P(G)
Possibly, God exists: OAxG(x)
Positive properties are necessarily positive:
V4[P($) > O P(9)]
An essence of an individual is a property possessed by it and
necessarily implying any of its properties:
P ess. x = ¢(x) AVY((x) O OVy(@(y) D ¥(y))
Being God-like is an essence of any God-like being:
Yx[G(x) D G ess. x]
Necessary existence of an individ. is the necessary exemplifi-
cation of all its essences: NE(x) = Vé[¢ ess. x D Odyd(y)]
Necessary existence is a positive property: P(NE)
Necessarily, God exists: 03dxG(x)

Figure 1. Scott’s version of Gddel’s ontological argument [30].
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Abstract

This paper discusses the discovery of the incon-
sistency in Godel’s ontological argument as a suc-
cess story for artificial intelligence. Despite the
popularity of the argument since the appearance
of Godel’s manuscript in the early 1970’s, the in-
consistency of the axioms used in the argument re-
mained unnoticed until 2013, when it was detected
automaticallv, hy the higher-order theorem nroyer
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on the proof [Fuhrmann, 2016].

The in-depth analysis presented here substantially extends
previous computer-assisted studies of Godel’s ontological
argument. Similarly to the related work [Benzmiiller and
Woltzenlogel-Paleo, 2013a; 2014] the analysis has been con-
ducted with automated theorem provers for classical higher-
order logic (HOL; cf. [Andrews, 2014] and the references
therein), even though Godel’s proof is actually formulated
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some (necessary) facts for our existing world are deduced by purely
a priori, analytical means from some abstract definitions and axioms.

What motivated Godel as a logician was the question, whether it

in higher-order modal logic (HOML; cf. [Muskens, 2006]
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T3 Necessarily, God exists: 03dxG(x)

Figure 1. Scott’s version of Gddel’s ontological argument [30].
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by Alexander Pruss, in Ontological Arguments, G. Oppy,
ed. (Cambridge, UK: Cambridge University Press).

(Pos1™) VRVS # O[GPPos(R®) - ~GPPos(R)]
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Godel’s Greatness & Games



Mate in 2 Problem




Mate in 2 Problem

Games, Puzzles,
&Computation

Robert A. Hear




Mate in 2 Problem

Games, Puzzles,
&Computation

Robert A. Hearn
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The Constraint-Logic
Formalism

The general model of games we will develop is based
on the idea of a constraint graph; by adding rules
defining legal moves on such graphs we get constraint
logic. Tn later chapters the graphs and the rules will
be specialized to produce games with different
numbers of players: zero, one, two, ete. A game
played on a constraint graph is a computation of a
sort, and simultaneously serves as a useful problem
to reduce to other games to show their hardness

In the game complexity literature, the standard

problem used to show games hard is some kind of

game played with a Boolean formula. The
Satisfiability problem (SAT), for example, can be

interpreted as a puzzle: the player must existentially
make a series of variable selections, so that the
formula is true. The corresponding model of
computation is nondeterminism, and the natural
complexity class is NP. Adding alternating existential
and universal quantifiers creates the Quantified
Boolean Formulas problem (QBF), which has a
natural interpretation as a two-player game [158
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Some of Godel’s great work is at the level of chess.



But to fully “gamify” Godel,
we need a harder game! ...
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American Go E-Journal

US Go Congress Goes a Little Crazy

Wednesday August 13, 2014

“White plays capturing black, putting herself and black into atari,” calls Crazy Go TD Terry Benson. He
officiated several games of Rengo Kriegspiel on Tuesday evening — a pair go game in which all four
players face away from the main board and play their stones on their own empty board in front of them;
the only clues about where their opponents — and even their partner — have played comes when they
make an illegal move, or play where their own team or their opponents already have stones. Rengo
Kriegspiel is only one of dozens of variants on the game of go that were played by an enthusiastic crowd
of around 100 players. Familiar games include Magnetic Go, 4 Color Go, Tessellation Go, 3D Go, Spiral
Go, and Blind Go. "After all these years, it's still crazy,” said TD and Crazy Go founder Terry Benson.
New Crazy Go games, never before played at a Go Congress, were even invented on the spot. Four
players donned sleeping masks to block their
vision and transformed Blind Go into Rengo Blind
| Go, and a few other players added the
fundamentals of Tiddlywinks to their go game.
Spectators and players alike are enthusiastic

31t eemesan,

3. .

ibss ity

about the creativity of the games and the fun of adding a little Crazy to Go; “Crazy Go is my favorite part
of the Congress!" said Bob Crites.
- report/photos by Karoline Li
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Rengo Kriegspiel

“One of the authors has personally played this game,
and it’s intriguing to think that it’'s possible he has
played the hardest game in the world, which cannot
even in principle be played by any algorithm. (Hearn &
Domaine 2009, sect 3.4.2, para. 2)




The Godel Game Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

logicians/mathematicians

R

The “Game Board”
(cannot be fully seen)

Theorem: ...

Proof: ...

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness
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