Killer Robots, D, and Beyond to
DCEC+* in HyperSlate®

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAI2

1 1/9/2020
ver 1111201115NY

R Al R

Rensselaer Al and' Reasoning Lab STy,
@D\R

{a

4
o



Logistics ...



6 Menu

Eot

B main.tex

v File outline

The List

Required by Thurs!

) IFLAI2F20_PAPERTOPICS

Rich Text

\documentclass[1lpt]l{article}

S W

\usepackage [utf8]{inputenc}
\usepackage{fullpage}
\usepackage{amssymb}
\usepackage[colorlinks]{hyperref}

\begin{document}

\title{\textbf{IFLAI2F20 Paper Topics}}
\author{Selmer Bringsjord}
\date{\texttt{ver 1109201500NY}}
\maketitle

\noindent

)
)

This document maintains the list of selected
paper topics and specific

claims etc.\ for each student enrolled in
\href{http://www.logicamodernapproach.com/rpi/
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is a bullet that gives first the general topic
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specific chief claim the
student is making in the paper.
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at the very outset of the paper itself.
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e Mike Giancola v/

— Specific Claim: The proposal to tax corporate ML activity made recently by S Bringsjord

Topic Area: Paternalistic Taxation of Machine Learning.

would face four major roadblocks to successful implementation: (1) passage into law;
(2) enforcement; and efficacy, both in terms of (3a) reducing harm and (3b) shifting
research towards logic-based methods.

e Jasper Covey v

e Joe

Topic Area: Modeling Taxation, Effort, and Wealth.

Specific Claim: The taxation model, S, proposed in class by S Bringsjord lacks an
account of the effects of capital on effort that, when implemented, would necessitate a
progressive tax scheme.

Halasz v

Topic Area: The Argument for God’s Existence from Al

Specific Claim: The argument for God’s Existence proposed by S Bringsjord, specif-
ically section 4.1 about premise 4 vulnerabilities, does not take new studies on canine
ability into account that could remove the discontinuity between the human mind and
the canine mind, and premise 5 in The Argument does not take into account the fact
that other natural forces still having to do with physical science could have caused it to
be the case that we have this level of cognitive power.

e John Slowik

Topic Area: Modeling Taxation, Effort, and Wealth.

Specific Claim: The proposed tax model fails to afford the taxed individuals ethical
standards of living, promotes counterproductive behavior in the taxed population, and
stifles competition and innovation, contrary to its claims that such a model is required
for the respective promotion or supression of the same. I intend to model this using
an ordinal set of activities A which citizens can participate in only if they satisfy some
requirement, e.g. having sufficient capital. The set being ordinal means that a citizen
will choose to participate in activities in order until they cannot perform further activities
due to exhausted means (again noting that each activity maintains its own satisfaction
conditions).
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Schedule Switcheroo

e Nov 5: Pure General Logic Programming, Func-
tional Programming, Turing-Completeness, and
Beyond. We review the basic paradigms of
computer programming. For the imperative
case, we use the simple imperative language of
(Davis, Sigal & Weyuker 1994), and also dis-
cuss register machines, Turing machines (again),
KU machines. We also discuss whether pro-
gramming beyond the Turing Limit makes sense
and can be pursued.

e Nov 9: Hypergraphical Proof and Program-

ming in HyperSlate@. We here introduce the
availability of writing Clojure functions in the

context of proofs in HyperSlate®.

e Nov 12: Quantified Modal Logic. We here ex-
plore quantified S5, the infamous Barcan For-
mula. HyperSlate® is used.

e Nov 16: Killer Robots, D, and Beyond in

HyperSlate@ to DCEC. We begin here by stat-
ing the “PAID Problem,” and then the ap-
proach to it from Bringsjord et al. advocates.
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(via formal logic, directly; a start)

Phe
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Ah. This Is not a direct analogue to the AH. The
arrows going up do Indicate containment, but
the purely “logicist” notation based on
quantifiers Is apparently mixed here
(dangerously). The “Delta notation” is the oracle
approach to building up PH. The avallability of
an oracle e.g. for NP questions from P-solving
machine would subsume both NP and coNFE etc.
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CHAPTER 4. PROPOSITIONAL MODAL LOGIC 122

4.4.4 D=SDL (=‘Standard Deontic Logic’)

We here introduce what is known as ‘Standard Deontic Logic’ (SDL), which in Slate
is the system D. Deontic logic is the sub-branch of logic devoted to formalizing the
fundamental concepts of morality; for example, the concepts of obligation, permissi-
bility, and forbiddenness. The first of these three concepts can apparently serve as
a cornerstone, since to say that ¢ (a formulae representing some state-of-affairs) is
permissible seems to amount to saying that it’s not obligatory that it not be the case
that ¢ (which shows permissibility can be defined in terms of obligation), and to
say that ¢ is forbidden would seem to amount to it being obligatory that it not be
the case that ¢ (which of course appears to show that forbiddenness buildable from
obligation). This interconnected trio of ethical concepts is a triad explicitly invoked
and analyzed since the end of the 18" century, and the importance of the triad even
to modern deontic logic would be quite hard to exaggerate.”
SDL is traditionally axiomatized by the following:'"

SDL

TAUT All theorems of the propositional calculus.
OB-K O(¢ —y)—(0¢ —0Y)

OB-D ©¢ —»—-0-¢

MP If+¢ andt¢ — iy, thentk ¢

OB-NEC If- ¢ then-®¢
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OB-RE If ¢ «— ¢, then©¢ « Q.

0B-K. Ly — @) — (U — Oy) OB-D. O — -~
De-v =01 D v =]

rTheoreml. O(Z v ~2)
{Theoreml} Assume /

rTheoremZ. ~0(Z A ~2)
{Theorem2} Assume v/

-

VTheorem3. @ ay) = (O a Dlu)1
{Theorem3} Assume /

J

rTheorem4. (O A Og) — L(p A l.l))j
{Theorem4} Assume /

- -

Figure 4.7: The Initial Configuration Upon Opening the File SDL.s1t



4.4.4.1 Chisholm’s Paradox and SDL

There are a host of problems that, together, constitute what is probably a fatal threat
to SDL as a model of human-level ethical reasoning. We discuss in the present
section the first of these problems to hit the “airwaves”: Chisholm’s Paradox (CP)
(Chisholm 1963). CP can be generated in Slate, you we shall see. But before we get to
the level of experimentation in Slate, let’s understand the scenario that Chisholm’s
imagined.

Chisholm’s clever scenario revolves around the character Jones.!! It’s given that
Jones is obligated to go to assist his neighbors, in part because he has promised to
do so. The second given fact is that it's obligatory that, if Jones goes to assist his
neighbors, he tells them (in advance) that he is coming. In addiiton, and this is the
third given, if Jones doesn'’t go to assist his neighbors, it's obligatory that he not tell

1TWe change some particulars to ease exposition; generally, again, follow, the SEP entry on deontic logic
(recall footnote 10). The core logic mirrors (Chisholm 1963), the original publication.

CHAPTER 4. PROPOSITIONAL MODAL LOGIC 124

them that he is coming. The fourth and final given fact is simply that Jones doesn't
go to assist his neighbors. (On the way to do so, suppose he comes upon a serious
vehicular accident, is proficient in emergency medicine, and (commendably!) seizes
the opportunity to save the life (and subsequently monitor) of one of the victims in
this accident.) These four givens have been represented in an obvious way within
four formula nodes in a Slate file; see Figure 4.8. (Notice that O is used in place of
®.) The paradox arises from the fact that Chisholm’s quartet of givens, which surely
reflect situations that are common in everyday life, in conjunction with the axioms of
SDL, entail outright contradictions (see Exercise 2 for D = SDL, in §4.4.4.2).



4.4.4.1 Chisholm’s Paradox and SDL

There are a host of problems that, together, constitute what is probably a fatal threat
to SDL as a model of human-level ethical reasoning. We discuss in the present
section the first of these problems to hit the “airwaves”: Chisholm’s Paradox (CP)
(Chisholm 1963). CP can be generated in Slate, you we shall see. But before we get to
the level of experimentation in Slate, let’s understand the scenario that Chisholm’s
imagined.

Chisholm’s clever scenario revolves around the character Jones.!! It’s given that
Jones is obligated to go to assist his neighbors, in part because he has promised to
do so. The second given fact is that it’s obligatory that, if Jones goes to assist his
neighbors, he tells them (in advance) that he is coming. In addiiton, and this is the
third given, if Jones doesn'’t go to assist his neighbors, it’s obligatory that he not tell

1TWe change some particulars to ease exposition; generally, again, follow, the SEP entry on deontic logic
(recall footnote 10). The core logic mirrors (Chisholm 1963), the original publication.

CHAPTER 4. PROPOSITIONAL MODAL LOGIC 124

them that he is coming. The fourth and final given fact is simply that Jones doesn't
go to assist his neighbors. (On the way to do so, suppose he comes upon a serious
vehicular accident, is proficient in emergency medicine, and (commendably!) seizes
the opportunity to save the life (and subsequently monitor) of one of the victims in
this accident.) These four givens have been represented in an obvious way within
~ Tour formula nodes in a Slate file; see Figure 4.8. (Notice that O is used in place of
®.) The paradox arises from the fact that Chisholm’s quartet of givens, which surely
reflect situations that are common in everyday life, in conjunction with the axioms of
SDL, entail outright contradictions (see Exercise 2 for D = SDL, in §4.4.4.2).




Chisholm’s Paradox
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(Axiom4. "Modus ponens for provability."
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Axiom1. "All theorems of the propositional calculus."
{Axiom1} Assume v/
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Required

D ,,Q ChisholmsParadox

Here you are asked to build a proof that confirms Chisholm’s Paradox. This paradox is that from a particular
representation in D (= Standard Deontic Logic (SDL)) of four seemingly innocuous givens, a contradiction ( A —( can
be deduced. (Your instructor should have covered this in class, and may well have supplied a proof of CP.) The four
givens are based on the story of a character Jones, who is obligated to go to assist his neighbors (move to a different
domicile, e.g.). It would be wrong of him to show up unannounced, though; so if he goes to assist them, it ought to be
that he tells them he’s coming. In addition, if it's not the case that Jones goes to assist them, then it ought to be that it
not be the case that he tells them he is coming. Finally, as a matter of fact, it's not case the Jones goes to assist
(because on the way he comes across a car accident, and has an opportunity to save one of the victims).

Fortunately, the RAIR Lab’s modern cognitive calculus DCEC* allows Chisholm'’s Paradox to be avoided. A recent
paper explaining the use by an ethically correct Al of this calculus is available here.

Your finished proof is allowed to make use of the PC provabiity oracle, but of no other oracle.

Deadline November 12, 2020, 3:00 PM EST

Overall Measures for: ChisholmsParadox

38 37 1 O

.‘. ChisholmsParadox_Mon_Nov_09 2020.13:50:13_GMT-0500_(EST).csv



SDL’s = D’s Problems
Don’t Stop Here:

The Free Choice
Permission Paradox ...



The Free Choice Permission Paradox (Ross)

1. "You may either sleep on the sofa bed or the guest bed."
{1} Assume v/

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."
{2} Assume v
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Required

Q TheFreeChoicePermissionParadox

Producing a valid proof in this problem will enable you to understand The Free Choice Permission Paradox (FCPP),
discovered in 1941 by Ross (“Imperatives and Logic,” Theoria 7: 53-71). Given that the proof in question yields an
absurdity, FCPP can be taken to show that SDL (Standard Deontic Logic) = D leads to inconsistency when applied; or,
put in Al terms, you wouldn’t want a robot to base its ethical decision-making on D! Fortunately, the RAIR Lab’s
modern cognitive calculus DCEC* allows FCPP to be avoided. (A recent paper explaining the use by an ethically
correct Al of this calculus is available here.)

Here's the paradox. Suppose that you travel to visit a friend, arrive late at night, and are weary. Your friend says
hospitably: “You may either sleep on the sofa-bed or sleep on the guest-room bed.” (1) From this statement it follows
that you are permitted to sleep on the sofa-bed, and you are permitted to sleep on the guest-room bed. (2) In D, this
pair gets symbolized like this:

(1)
O(sofabed Vv guestbed)

(2"
Osofabed N QO guestbed

But (2') doesn't follow deductively from (1') in D, as a call to the provability oracle for D in the HyperSlate™ file for this
problem confirms. A suggested repair is to add to D the schema

O(d V) = (0 A OY),

but as your proof will (hopefully) show, this addition allows a proof of the absurd theorem that if anything is morally
perimssible, everything is!

Your finished proof is allowed to make use of the PC provabiity oracle, but of no other oracle.

Deadline November 12, 2020, 3:00 PM EST







“Computational logician,
sorry, back to your drawing
board to find a logic that
works with The Four Steps!”



D QTheFreeChoicePermissionParadox

Producing a valid proof in this problem will enable you to understand The Free Choice Permission Paradox (FCPP), discovered in 1941 by
Ross (“Imperatives and Logic,” Theoria 7: 53-71). Given that the proof in question yields an absurdity, FCPP can be taken to show that SDL
(Standard Deontic Logic) = D leads to inconsistency when applied; or, put in Al terms, you wouldn’t want a robot to base its ethical decision-
making on D! Fortunately, the RAIR Lab’s modern cognitive calculus DCEC" allows FCPP to be avoided. (A recent paper explaining the use by
an ethically correct Al of this calculus is available here.)

Here's the paradox. Suppose that you travel to visit a friend, arrive late at night, and are weary. Your friend says hospitably: “You may either
sleep on the sofa-bed or sleep on the guest-room bed.” (1) From this statement it follows that you are permitted to sleep on the sofa-bed,
and you are permitted to sleep on the guest-room bed. (2) In D, this pair gets symbolized like this:

(1)
O(sofabed V guestbed)

(2"
Osofabed N Qguestbed

But (2') doesn't follow deductively from (1') in D, as a call to the provability oracle for D in the HyperSlate™ file for this problem confirms. A
suggested repair is to add to D the schema

0oV ) — (08 A OY),

but as your proof will (hopefully) show, this addition allows a proof of the absurd theorem that if anything is morally perimssible, everything
is!

Your finished proof is allowed to make use of the PC provabiity oracle, but of no other oracle. (No deadline for now.)



DCEC* !



https://www.ijcai.org/Proceedings/2017/0658.pdf

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

On Automating the Doctrine of Double Effect

Naveen Sundar Govindarajulu and Selmer Bringsjord
Rensselaer Polytechnic Institute, Troy, NY
{naveensundarg,selmer.bringsjord } @ gmail.com

Abstract — provided that 1) the harmful effects are not intended;
2) the harmful eff hi h ficial
The doctrine of double effect (DDE) is a long- ) the harmful effects are not used to achieve the beneficia

. } . : effects (harm is merely a side-effect); and 3) benefits out-
studied ethical princt ple that governs When actions weigh the harm by a significant amount. What distinguishes
that have both posmve. and.negatlve. effects are to DDE from, say, naive forms of consequentialism in ethics
be allowed. T.he goal in this paper is to automate (e.g. act utilitarianism, which holds that an action is obliga-
DDE. We brlqﬂy present ?@Z’ ?I,ld use a first- tory for an autonomous agent if and only if it produces the
order modal logic, the deontic cogpltlve event gal- most utility among all competing actions) is that purely men-
culus, as our framework to formalize the doctrine.
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4 Informal DDE

We now informally but rigorously present DDE. We as-
sume we have at hand an ethical hierarchy of actions as in
the deontological case (e.g. forbidden, neutral, obligatory);
see [Bringsjord, 2017]. We also assume that we have a utility
or goodness function for states of the world or effects as in
the consequentialist case. For an autonomous agent a, an ac-
tion ¢ in a situation ¢ at time ¢ is said to be DDE-compliant

iff:
C

the action is not forbidden (where we assume an ethical hier-
archy such as the one given by Bringsjord [2017], and require
that the action be neutral or above neutral in such a hierarchy);

The net utility or goodness of the action is greater than some
positive amount ;

the agent performing the action intends only the good effects;
the agent does not intend any of the bad effects;

the bad effects are not used as a means to obtain the good ef-
fects; and

if there are bad effects, the agent would rather the situation be
different and the agent not have to perform the action. That is,
the action is unavoidable.













Formal Conditions for DDE

F; o carried out at ¢ is not forbidden. That is:

'/ -0 (a, t,0,—happens(action(a,a.),) )

F, The net utility is greater than a given positive real y:

H
r- Y ( Y u(fy)—- ), ﬂ(f,y)) >y

y=t+1 \ feo}' feay

F3, The agent a intends at least one good effect. (F, should
still hold after removing all other good effects.) There is

at least one fluent f, in o with u(f,,y) > 0, or f; in

o’ with u(fy,y) < 0, and some y with t <y < H such
that the following holds:

dfg € (x?’t I(a,t,Holds(fg,y))
'~ Vv

3fy € a‘}” I(a,t,—lHolds(fb,y))

F31, The agent a does not intend any bad effect. For all fluents

fp in o’ with u(fy,y) <0, or f, in &’ with u(fe,y) >
0, and for all y such that t < y < H the following holds:

I" I(a,t,Holds(fb,y)) and

T AT (a, t, —:Holds(fg,)’))

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of > above, hold
here. One such permutation is shown below. For any bad
fluent fj holding at #1, and any good fluent f; holding at
some fp, such that ¢t < t1,# < H, the following holds:

T+~ (Holds (fy,11), Holds(fy12) )
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Inference Schemata

K(a,t;,T), TF¢, 11 <t B(a,t;,I'), TFo, t1 <t

K(a,1,0) a B(a,12,9) el

C(t,P(a,t,0) — K(a,t,0)) [R:] C(1,K(a,t,0) = B(a,1,0)) (%]

Ct,0)t<t;...t<t, R] K(a,t,9)
K(al,tl,...K(an,tn,q’)---) ’ ¢

[R4]

[Rs]

[Re]

C(2,K(a,11,01 = ¢2)) = K(a,12,01) — K(a,13,0,)

C(I,B(a,t1,¢1 — ¢2)) — B(a,t2a¢l) - B(a’t3a¢2)
[R7]

C(t,C(t1,01 — 02)) = C(t2,01) — C(13,02)

C(t,Vx. & — 0[x +— 1]) [Rs] C(t,01 <> 62 = ~h2 — —01) 1%

[Rio]

Ct,[01N...AOp = 0] = [01 = ... = 0, = V])
S(s,h,t,0) I(a,t,happens(action(a*,a),t"))
[R12] —— [R13]
B(h,t,B(s,t,0)) P(a,t,happens(action(a*,a.),t))
B(a,7,0) B(a,2,0(a,1,0,X)) O(a,t,9,%)

K(a,t,1(a,t,%))

[R14]
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