Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Ver 10/1/2020 (updated Oct 6 2020)

Note: This is a version designed for those who have had at least one serious, proof-intensive university-level course in formal logic.

Background Context ...

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis
 Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
 - Brief Preliminaries (e.g. the propositional calculus & FOL)
 - The Completeness Theorem
 - The First Incompleteness Theorem
 - The Second Incompleteness Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)

- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
 - The Second Incompleteness Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Finite Machine Match Gödel's Greatness?

- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- ✓ The First Incompleteness Theorem
- The Second Incompleteness
 Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Finite Machine Match Gödel's Greatness?

- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

by Selmer Bringsjord

- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- ✓ The First Incompleteness Theorem
- The Second Incompleteness
 Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Finite Machine Match Gödel's Greatness?

Switching to more expressive logics can produce a level of speedup beyond the reaching of standard computation. By far the greatest of GGT; Selm's analysis based Sherlock Holmes' mystery "Silver Blaze."

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec

7.5 sec: 150 mph

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

light-gas gun

I sec: 20,000 mph

2 sec: 60 mph

I sec: 20,000 mph

5.5 sec: 100 mph

7.5 sec: 150 mph

20 sec: 268 mph

520 sec: 17,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

2 sec: 60 mph 5.5 sec: 100 mph

I sec: 20,000 mph

7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs) super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow \dots \uparrow x))$ (y xs)

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs) super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow \dots \uparrow x))$ (y xs)

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow ... \uparrow x))$ (y xs)

$$\alpha(x, y, z) = x \langle y \rangle z$$
 and $\gamma(x) = \alpha(x, x, x)$; then:

$$\gamma(0) = 0 + 0 = 0$$

 $\gamma(1) = 1 \cdot 1 = 0$
 $\gamma(2) = 2^2 = 4$
 $\gamma(3) = 3^{3^3} = 3 \uparrow \uparrow 3 = 7,625,597,484,987$
 $\gamma(4) = 4 \uparrow \uparrow 4 => 10^{1000} \text{(note: } 10^{100} \text{ is googol)}$

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow ... \uparrow x))$ (y xs)

$$\alpha(x, y, z) = x \langle y \rangle z$$
 and $\gamma(x) = \alpha(x, x, x)$; then:

$$\gamma(0) = 0 + 0 = 0$$

 $\gamma(1) = 1 \cdot 1 = 0$
 $\gamma(2) = 2^2 = 4$
 $\gamma(3) = 3^{3^3} = 3 \uparrow \uparrow 3 = 7,625,597,484,987$
 $\gamma(4) = 4 \uparrow \uparrow 4 => 10^{1000} \text{(note: } 10^{100} \text{ is googel)}$

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow ... \uparrow x))$ (y xs)

$$\alpha(x,y,z) = x\langle y\rangle z$$
 and $\gamma(x) = \alpha(x,x,x);$ then:

$$\gamma(0) = 0 + 0 = 0
\gamma(1) = 1 \cdot 1 = 0
\gamma(2) = 2^2 = 4
\gamma(3) = 3^{3^3} = 3 \uparrow \uparrow 3 = 7,625,597,484,987
\gamma(4) = 4 \uparrow \uparrow 4 => 10^{1000} (note: 10^{100} is googol)$$

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow ... \uparrow x))$ (y xs)

 $\alpha(x,y,z) = x\langle y\rangle z$ and $\gamma(x) = \alpha(x,x,x);$ then:

Ackermann Function

$$\gamma(0) = 0 + 0 = 0
\gamma(1) = 1 \cdot 1 = 0
\gamma(2) = 2^2 = 4
\gamma(3) = 3^{3^3} = 3 \uparrow \uparrow 3 = 7,625,597,484,987
\gamma(4) = 4 \uparrow \uparrow 4 => 10^{1000} (note: 10^{100} is googol)$$

 $\Sigma : \mathbb{Z}^+ \mapsto \mathbb{Z}^+$ where $\Sigma(k) = \max$ productivity of a k-state TM

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow ... \uparrow x))$ (y xs)

$$\alpha(x,y,z) = x\langle y\rangle z$$
 and $\gamma(x) = \alpha(x,x,x);$ then:

Ackermann Function

$$\gamma(0) = 0 + 0 = 0$$

 $\gamma(1) = 1 \cdot 1 = 0$
 $\gamma(2) = 2^2 = 4$
 $\gamma(3) = 3^{3^3} = 3 \uparrow \uparrow 3 = 7,625,597,484,987$
 $\gamma(4) = 4 \uparrow \uparrow 4 = > 10^{1000} \text{(note: } 10^{100} \text{ is googel)}$

 $\Sigma : \mathbb{Z}^+ \mapsto \mathbb{Z}^+$ where $\Sigma(k) = \max$ productivity of a k-state TM

2 sec: 60 mph 5.5 sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

I sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))

exponentiation: $x^y = x \cdot x \cdot \dots \cdot x$ (row of y xs)

super-exponentiation (tetration): $x \uparrow (x \uparrow (x \uparrow ... \uparrow x))$ (y xs)

$$\alpha(x,y,z) = x\langle y\rangle z$$
 and $\gamma(x) = \alpha(x,x,x);$ then:

Ackermann Function

$$\gamma(0) = 0 + 0 = 0$$

 $\gamma(1) = 1 \cdot 1 = 0$
 $\gamma(2) = 2^2 = 4$

$$\gamma(3) = 3^{3^3} = 3 \uparrow \uparrow 3 = 7,625,597,484,987$$

$$\gamma(4) = 4 \uparrow \uparrow 4 = > 10^{1000} \text{(note: } 10^{100} \text{ is googel)}$$

 $\Sigma: \mathbb{Z}^+ \mapsto \mathbb{Z}^+$ where $\Sigma(k) = \max$ productivity of a k-state TM

 $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

 $\exists x [Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

$$\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$$

Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

SOL $\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$ Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$ There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$ a is a llama, as is b, a likes b, and the father of a is a llama as well.

Things x and y, along with the father of x, share a certain property; and, x R^2 s y, where R^2 is a positive property.

SOL $\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$

Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

$$\exists x, y \; \exists R, R^2[R(x) \land R(y) \land R^2(x, y) \land Positive(R^2) \land R(fatherOf(x))]$$

Things x and y, along with the father of x, share a certain property; and, x R^2 s y, where R^2 is a positive property.

SOL
$$\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$$

Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

TOL $\exists x, y \; \exists R, R^2[R(x) \land R(y) \land R^2(x, y) \land Positive(R^2) \land R(fatherOf(x))]$ Things x and y, along with the father of x, share a certain property; and, $x \; R^2$ s y, where R^2 is a positive property.

SOL $\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$ Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$ There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$ a is a llama, as is b, a likes b, and the father of a is a llama as well.

TOL $\exists x, y \; \exists R, R^2[R(x) \land R(y) \land R^2(x, y) \land Positive(R^2) \land R(fatherOf(x))]$ Things x and y, along with the father of x, share a certain property; and, $x \; R^2$ s y, where R^2 is a positive property.

SOL $\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$ \mathscr{L}_2 Things x and y, along with the father of x, share a certain property (and x likes y).

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

 \mathscr{L}_0

•

TOL $\exists x, y \; \exists R, R^2[R(x) \land R(y) \land R^2(x, y) \land Positive(R^2) \land R(fatherOf(x))]$

Things x and y, along with the father of x, share a certain property; and, $x R^2$ s y, where R^2 is a positive property.

SOL $\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$

Things x and y, along with the father of x, share a certain property (and x likes y).

 \mathcal{L}_2

 \mathscr{L}_1

 \mathscr{L}_0

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

The Universe of Logics

 \mathcal{L}_3 \mathcal{L}_2

The Universe of Logics

•

TOL $\exists x, y \; \exists R, R^2[R(x) \land R(y) \land R^2(x, y) \land Positive(R^2) \land R(fatherOf(x))]$

Things x and y, along with the father of x, share a certain property; and, $x R^2$ s y, where R^2 is a positive property.

SOL $\exists x \exists y \exists R[R(x) \land R(y) \land Likes(x,y) \land R(fatherOf(x))]$

Things x and y, along with the father of x, share a certain property (and x likes y).

 \mathcal{L}_2

 \mathscr{L}_1

 \mathscr{L}_0

FOL $\exists x[Llama(x) \land Llama(b) \land Likes(x,b) \land Llama(fatherOf(x))]$

There's some thing which is a llama and likes b (which is also a llama), and whose father is a llama too.

ZOL $Llama(a) \wedge Llama(b) \wedge Likes(a,b) \wedge Llama(fatherOf(a))$

Let $i \geq 0$, and let f be any recursive function.

Let $i \geq 0$, and let f be any recursive function.

Then there is an infinite family \mathcal{F} of Π_1^0 formulae such that:

Let $i \geq 0$, and let f be any recursive function.

Then there is an infinite family \mathcal{F} of Π_1^0 formulae such that:

- 1. $\forall \phi \in \mathcal{F}, Z_i \vdash \phi;$ and
- 2. $\forall \phi \in \mathcal{F}$, if k is the least integer s.t. $Z_{i+1} \vdash^{k} \text{symbols } \phi$, then $Z_i \not\vdash^{f(k)} \text{symbols } \phi$.

Let $i \geq 0$, and let f be any recursive function.

Then there is an infinite family \mathcal{F} of Π_1^0 formulae such that:

- 1. $\forall \phi \in \mathcal{F}, Z_i \vdash \phi;$ and
- 2. $\forall \phi \in \mathcal{F}$, if k is the least integer s.t. $Z_{i+1} \vdash^{k \text{ symbols }} \phi$, then $Z_i \not\vdash^{f(k) \text{ symbols }} \phi$.

A Simpler Speedup Theorem

A Simpler Speedup Theorem

Let f be any recursive function, and again let us refer to $\Phi \supset \mathbf{PA}$. Then there are arithmetic \mathcal{L}_1 sentences ϕ s.t. $\Phi \vdash \phi$, where the shortest proof P confirming this has more more than $f(n^{\phi})$ symbols.

To prove GST, we shall once again allow ourselves ...

The Fixed Point Theorem (FPT)

Assume that Φ is a set of arithmetic sentences such that Repr Φ . There for every arithmetic formula $\psi(x)$ with one free variable x, there is an arithmetic sentence ϕ s.t.

$$\Phi \vdash \phi \leftrightarrow \psi(n^{\phi}).$$

We can intuitively understand ϕ to be saying: "I have the property ascribed to me by the formula ψ ."

Ok; so let's do it ...

Proof: Let f^* be an arbitrary (total) recursive function. We can clearly write a formula that expresses the property of having a proof in **PA** shorter, symbol-wise, than $f(n^{\phi})$, for the Gödel number of any formula ϕ . Let us do it like this: Prov-sh $_{\Phi}(n^{\phi})$. By Repr Φ , since a Turing machine can compute this relation, we then have:

$$(Rep*) = (I) \operatorname{Prov-sh}_{\Phi}(n^{\phi}) \operatorname{iff} \Phi \vdash \phi$$

Next, we can instantiate the Fixed Point Theorem to yield a formula that declares "There's no proof of me shorter than what f^* applied to me returns!" More formally, the instantiation will be:

(FPT*) = (2)
$$\Phi \vdash \bar{\pi}_{sh} \leftrightarrow \neg \text{Prov-sh}_{\Phi}(n^{\bar{\pi}_{sh}})$$

Now what about this self-referential sentence? Can it have a proof shorter than f^* applied to its Gödel number? Suppose it does. Then by left-to-right on (I) it's provable in Φ . But given this, combined with (2), this self-referential sentence is *not* provable by a derivation shorter than f^* applied to it — contradiction! **QED**

Proof (short!): Let f^* be a (total) recursive function. Write Prov-sh $_{\Phi}(n^{\phi})$ to express having a proof in **PA** shorter, symbol-wise, than $f(n^{\phi})$. Since Repr Φ , and this relation is Turing-computable:

$$(\mathsf{Rep}^*) = (\mathsf{I}) \; \mathsf{Prov-sh}_{\Phi}(n^{\phi}) \; \mathsf{iff} \; \Phi \vdash \phi$$

Next, instantiate the Fixed Point Theorem to yield:

$$(\text{FPT*}) = (2) \ \Phi \vdash \bar{\pi}_{sh} \leftrightarrow \neg \text{Prov-sh}_{\Phi}(n^{\bar{\pi}_{sh}})$$

Suppose this self-referential formula has a short proof. Then by left-to-right on (I) it's provable in Φ . But given this, combined with (2), this self-referential sentence is *not* provable by a derivation shorter than f^* applied to it — contradiction! **QED**

Med nok penger, kan logikk løse alle problemer.