Godel’s SpeedupTheorem
(GST)

Seimer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Ver 10/1/2020 (updated Oct 6 2020)

RA I R

Rensselaer Al and Reasoning Lab

Godel’s SpeedupTheorem
(GST)

Seimer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Ver 10/1/2020 (updated Oct 6 2020)

RA I R

Rensselaer Al and Reasoning Lab

OXTFORD

UNIVERSITY PRESS

Godel’s SpeedupTheorem
(GST)

Seimer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Ver 10/1/2020 (updated Oct 6 2020)

RA I R

Rensselaer Al and Reasoning Lab

OXTFORD

UNIVERSITY PRESS

Godel’s SpeedupTheorem
(GST)

Seimer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Ver 10/1/2020 (updated Oct 6 2020)

RA I R

Rensselaer Al and Reasoning Lab

OXTFORD

UNIVERSITY PRESS

)
V7

Godel’s SpeedupTheorem
(GST)

Seimer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)

. . Troy, New York 12180 USA
Note: Thisis a version 4

designed for those who have Ver 10/1/2020 (updated Oct 6 2020)
had at least one serious,
proof-intensive university-
level course in formal logic.

RA I R

Rensselaer Al and Reasoning Lab

OXTFORD

UNIVERSITY PRESS

)
V7

Background Context ...

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

‘\/ ® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

<~

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

Godel’s Great Theorems (oup)

S

STOP & REVIEW [F NEEDED!

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem
The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

The Continuum-Hypothesis
Theorem

The Time-Travel Theorem
Godel’s “God Theorem”

Could a Finite Machine Match
Godel’s Greatness!

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

Godel’s Great Theorems (oup)

SN S5

STOP & REVIEW [F NEEDED!

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem
The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

The Continuum-Hypothesis
Theorem

The Time-Travel Theorem
Godel’s “God Theorem”

Could a Finite Machine Match
Godel’s Greatness!

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

LN L&

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem

The First Incompleteness Theorem

The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem

The First Incompleteness Theorem

NS A~

The Second Incompleteness
Theorem

wfl— ¢ The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

Switching to more expressive logics can produce a level of speedup beyond the reaching of standard computation.

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

STOP & REVIEW [F NEEDED!

Godel’s Great Theorems (oup)

by Selmer Bringsjord

Introduction (“The Wager”)

Brief Preliminaries (e.g. the
propositional calculus & FOL)

The Completeness Theorem

The First Incompleteness Theorem

The Second Incompleteness
Theorem

The Speedup Theorem

|

® The Continuum-Hypothesis
Theorem

® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
Godel’s Greatness!

Switching to more expressive logics can produce a level of speedup beyond the reaching of standard computation.
By far the greatest of GGT; Selm’s analysis based Sherlock Holmes’ mystery “Silver Blaze.”

http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov
http://www.logicamodernapproach.com/rpi/intlogs20.bringsjord/SBGCT4OUP.mov

Ascending Acceleration

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x,y") = g(x, v, h(x,y))

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x,y") = g(x,y, h(x,Vy))

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x,y") = g(x,y, h(x,Vy))

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x,y") = g(x,y, h(x,Vy))

exponentiation: x¥ =x-x-...-x (row of y xs)

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x,y") = g(x,y, h(x,Vy))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun

PrRec: h(x,0) = f(x); h(x,y") = g(x, y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

Ackermann
Function

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

light-gas gun
PrRec: h(x,0) = f(x); h(x, y') = g(x, y, h(x, y))
exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:
F(0)=04+0=0

Ackermann ’yg; = ;2- 1 ZO

. ol = =

Function v(3) = 33" =311 3 = 7,625,597, 484, 987

v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

Iig-g gn
PrRec: A(x,0) = f(x); h(x,y") = g(x,y, h(x,y))
exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:
F(0)=04+0=0

Ackermann vgg = ;2- 1 ZO

. ol = =

Function ~(3) = 3% =311 3 =7,625,597, 484, 987

v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

Iig-g gn
PrRec: A(x,0) = f(x); h(x,y") = g(x,y, h(x,y))
exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:
F(0)=04+0=0

Ackermann vgg = ;2- 1 ZO

. ol = =

Function ~(3) = 3% =311 3 =7,625,597, 484, 987

v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

PrRec: h(x,0) = f(x); h(x,y") = g(x, y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

PrRec: h(x,0) = f(x); h(x,y") = g(x, y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM

Ascending Acceleration

2 sec: 60 mph 5.5sec: 100 mph 7.5 sec: 150 mph

20 sec: 268 mph 520 sec: 17,000 mph

| sec: 20,000 mph

PrRec: h(x,0) = f(x); h(x,y") = g(x, y, h(x,y))

exponentiation: x¥ =x-x-...-x (row of y xs)
super-exponentiation (tetration): x T (x T (x 7 ... Tx)) (¥ x5s)

a(x,y,z) = z(y)z and y(x) = a(x,z,z); then:

7(0)=0+0=0
Ackermann vglg =1-1=0
. v(2) =22 =4
Function v(3) = 3%° = 311 3 = 7,625,597, 484, 987
v(4) = 4 11 4 => 10199 (note: 10199 is googol)

Y :Z" — Z% where £(k) = max productivity of a k-state TM ﬁ:
i

Climbing the k-order Ladder

Climbing the k-order Ladder

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

Llama(a) N\ Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

dz|Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

drdydR[R(x) A R(y) A Likes(z,y) N R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

Jz,y AR, R*[R(x) A R(y) A R*(x,y) A Positive(R?) A R(fatherOf (z))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

TOL 3z,y 3R, R*[R(x) A R(y) A R*(z,y) A Positive(R?) A R(fatherOf (x))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

SOL dzdydR|R(x) A R(y) A Likes(x,y) A R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

FOL dz[Llama(x) A Llama(b) A Likes(xz,b) A Llama(fatherOf (z))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

Jz,y AR, R*[R(x) A R(y) A R*(x,y) A Positive(R?) A R(fatherOf (z))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

drdydR[R(x) A R(y) A Likes(z,y) N R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

dz|Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

Llama(a) N\ Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Climbing the k-order Ladder

Jz,y AR, R*[R(x) A R(y) A R*(x,y) A Positive(R?) A R(fatherOf (z))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

drdydR[R(x) A R(y) A Likes(z,y) N R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

dz|Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

Llama(a) N\ Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

The Universe of Logics

o DCEC 2 = first-order logic

£y = zeroth-order logic

The Universe of Logics

o DCEC 2 = first-order logic

£y = zeroth-order logic

The Universe of Logics

o DCEC 2 = first-order logic

£y = zeroth-order logic

Climbing the k-order Ladder

Jz,y AR, R*[R(x) A R(y) A R*(x,y) A Positive(R?) A R(fatherOf (z))]

Things x and y, along with the father of x, share a certain
property; and, x R%s y, where R< is a positive property.

drdydR[R(x) A R(y) A Likes(z,y) N R(fatherOf (x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

dz|Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

There's some thing which is a llama and likes b (which s
also a llama), and whose father is a llama too.

Llama(a) N\ Llama(b) A Likes(a,b) A Llama(fatherOf (a))

ais allama, as is b, a likes b, and the father of g is a llama as well.

Godel’s Speedup Theorem

Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Then there is an infinite family F of I1Y formulae such that:

Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Then there is an infinite family F of I1Y formulae such that:

1. Ve eF, 7t ¢ and
2. V¢ € F,if k is the least integer s.t. Z; ;1 F* symbols 4 then 7, f (k) symbols

Godel’s Speedup Theorem

Let 7 > 0,and let f be any recursive function.

Then there is an infinite family F of I1Y formulae such that:

1. Ve eF, 7t ¢ and
2. V¢ € F,if k is the least integer s.t. Z; ;1 F* symbols 4 then 7, f (k) symbols

A Simpler Speedup Theorem

A Simpler Speedup Theorem

Let f be any recursive function, and again let us
refer to @ D PA. Then there are arithmetic £,
sentences @ st. @ F @, where the shortest proof P
confirming this has more more than f(n?) symbols.

To prove GST, we shall once
again allow ourselves ...

The Fixed Point Theorem (FPT)

Assume that @ is a set of arithmetic sentences such
that Repr @. There for every arithmetic formula y(x)
with one free variable x, there Is an arithmetic
sentence ¢ sit.

®+ P o wn?

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”

Ok;soletsdo it ...

Proof. Let /* be an arbitrary (total) recursive function. We can clearly
write a formula that expresses the property of having a proof in PA
shorter, symbol-wise, than f(n?), for the Gédel number of any formula ¢.
Let us do it like this: Prov-shg(n?). By Repr @, since a Turing machine can
compute this relation, we then have:

(Rep*) = (1) Prov-she(n?) iff ® F ¢

Next, we can instantiate the Fixed Point Theorem to yield a formula that
declares “There’s no proof of me shorter than what f* applied to me
returns!” More formally, the instantiation will be:

(FPT*) = (2) ® F 7, <> —Prov-she(n™")

Now what about this self-referential sentence! Can it have a proof
shorter than f* applied to its Godel number? Suppose it does. Then by
left-to-right on (1) it's provable in @. But given this, combined with (2),
this self-referential sentence is not provable by a derivation shorter than
f* applied to it — contradiction! QED

Proof (short)): Let f* be a (total) recursive function. Write Prov-shg(n?)
to express having a proof In PA shorter, symbol-wise, than f(n?). Since
Repr @, and this relation is Turing-computable:

(Rep*) = (1) Prov-she(n?) iff ® - ¢

Next, instantiate the Fixed Point Theorem to yield:

(FPT*) = (2) ® + 7, < —Prov-she(n™)

Suppose this self-referential formula has a short proof. Then by left-to-
right on (1) it's provable in ®. But given this, combined with (2), this self-
referential sentence is not provable by a derivation shorter than f*
applied to it — contradiction! QED

Med nok penger, kan
logikk lese alle problemer.

