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A Simpler Speedup Theorem

Let f be any recursive function, and again let us
refer to @ D PA. Then there are arithmetic £,
sentences @ st. @ F @, where the shortest proof P
confirming this has more more than f(n?) symbols.



To prove GST, we shall once
again allow ourselves ...



The Fixed Point Theorem (FPT)

Assume that @ is a set of arithmetic sentences such
that Repr @. There for every arithmetic formula y(x)
with one free variable x, there Is an arithmetic
sentence ¢ sit.

®+ P o wn?

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”



Ok;soletsdo it ...



Proof. Let /* be an arbitrary (total) recursive function. We can clearly
write a formula that expresses the property of having a proof in PA
shorter, symbol-wise, than f(n?), for the Gédel number of any formula ¢.
Let us do it like this: Prov-shg(n?). By Repr @, since a Turing machine can
compute this relation, we then have:

(Rep*) = (1) Prov-she(n?) iff ® F ¢

Next, we can instantiate the Fixed Point Theorem to yield a formula that
declares “There’s no proof of me shorter than what f* applied to me
returns!” More formally, the instantiation will be:

(FPT*) = (2) ® F 7, <> —Prov-she(n™")

Now what about this self-referential sentence! Can it have a proof
shorter than f* applied to its Godel number? Suppose it does. Then by
left-to-right on (1) it's provable in @. But given this, combined with (2),
this self-referential sentence is not provable by a derivation shorter than
f* applied to it — contradiction! QED



Proof (short)): Let f* be a (total) recursive function. Write Prov-shg(n?)
to express having a proof In PA shorter, symbol-wise, than f(n?). Since
Repr @, and this relation is Turing-computable:

(Rep*) = (1) Prov-she(n?) iff ® - ¢

Next, instantiate the Fixed Point Theorem to yield:

(FPT*) = (2) ® + 7, < —Prov-she(n™)

Suppose this self-referential formula has a short proof. Then by left-to-
right on (1) it's provable in ®. But given this, combined with (2), this self-
referential sentence is not provable by a derivation shorter than f*
applied to it — contradiction! QED






Med nok penger, kan
logikk lese alle problemer.



