Selmer Bringsjord*

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

9/21/2020 (patched 10/5/20)

Selmer Bringsjord*

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

9/21/2020 (patched 10/5/20)

Selmer Bringsjord*

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

9/21/2020 (patched 10/5/20)

Selmer Bringsjord*

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

9/21/2020 (patched 10/5/20)

Note: This is a version designed for those who have had at least one robust, proof-intensive university-level course in formal logic.

Selmer Bringsjord*

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

9/21/2020 (patched 10/5/20)

Background Context ...

Gödel's Great Theorems (OUP)

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

STOP & REVIEW IF NEEDED!

Gödel's Great Theorems (OUP)

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Finite Machine Match Gödel's Greatness?

STOP & REVIEW IF NEEDED!

Gödel's Great Theorems (OUP)

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
 - The Second Incompleteness Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Finite Machine Match Gödel's Greatness?

STOP & REVIEW IF NEEDED!

Gödel's Great Theorems (OUP)

by Selmer Bringsjord

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
 - The Second Incompleteness Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Finite Machine Match Gödel's Greatness?

A corollary of the First Incompleteness Theorem: We cannot prove (in classical mathematics) that mathematics is consistent.

Gödel's Great Theorems (OUP)

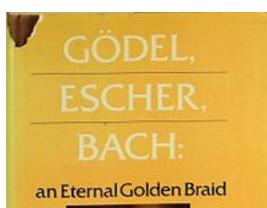
- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
 - The Second Incompleteness Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Machine Match Gödel's Genius?

Gödel's Great Theorems (OUP)

by Selmer Bringsjord

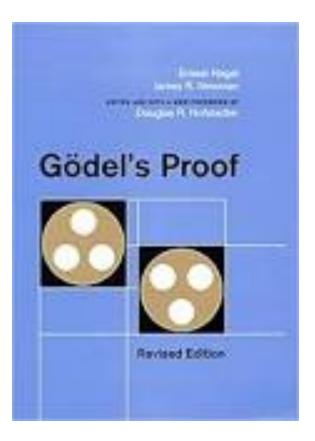
- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
 - The Second Incompleteness Theorem
 - The Speedup Theorem
 - The Continuum-Hypothesis Theorem
 - The Time-Travel Theorem
 - Gödel's "God Theorem"
 - Could a Machine Match Gödel's Genius?

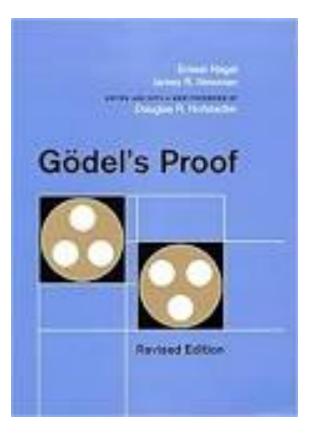
By far the greatest of GGT; Selm's analysis based Sherlock Holmes' mystery "Silver Blaze."



Douglas R. Hofstadter

A metaphorical fugue on minds and machines in the spirit of Lewis Carroll





an Eternal Golden Braid

Douglas R. Hofstadter

A metaphorical fugue on minds and machines in the spirit of Lewis Carroll

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem 1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna

1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem 1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna

1978 Princeton NJ USA.

1940 Back to USA, for good.

1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) *In*completeness Theorem 1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna

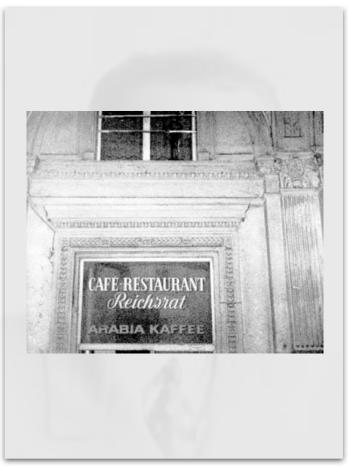
1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem 1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna



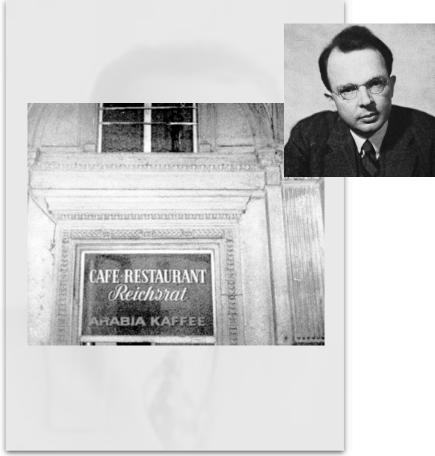
1978 Princeton NJ USA.

1940 Back to USA, for good. 1936 Schlick murdered; Austria annexed

1933 Hitler comes to power.

1930 Announces (First) Incompleteness Theorem 1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

1923 Vienna



"Well, uh, hmm, ..."

1978 Princeton NJ USA.

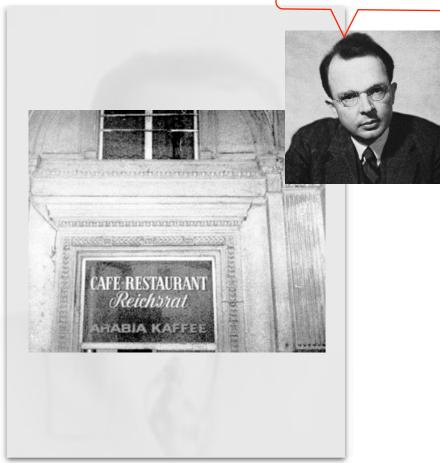
1940 Back to USA, for good.

1936 Schlick murdered; Austria annexed

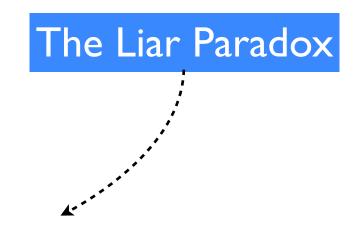
1933 Hitler comes to power.

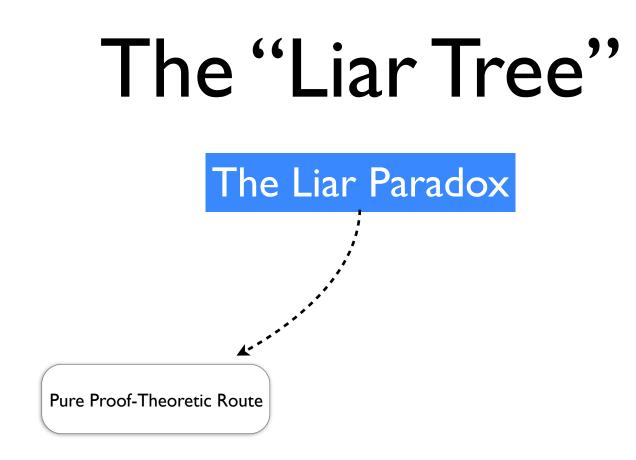
1930 Announces (First) Incompleteness Theorem 1929 Doctoral Dissertation: Proof of Completeness Theorem Undergrad in seminar by Schlick

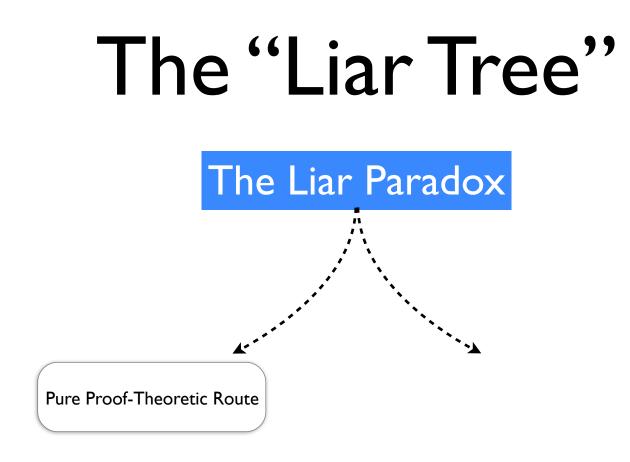
1923 Vienna

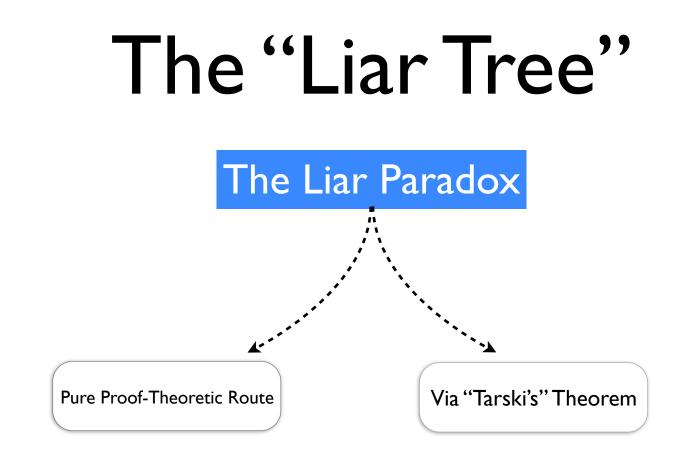


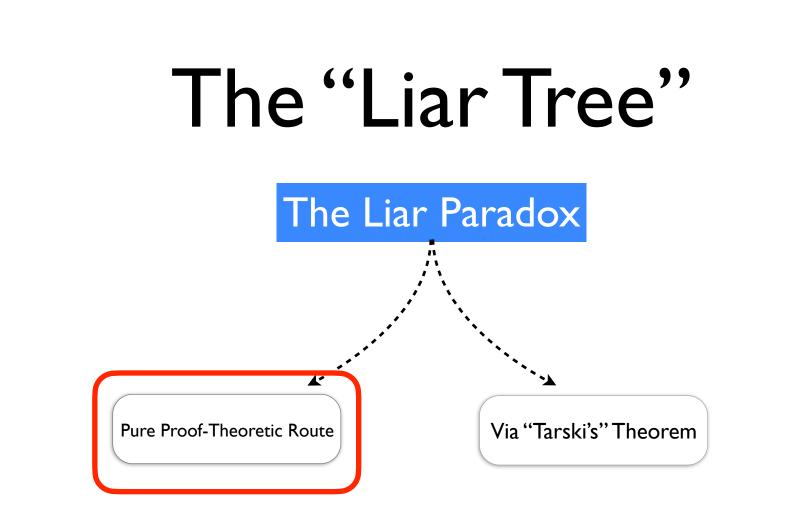
The Liar Paradox

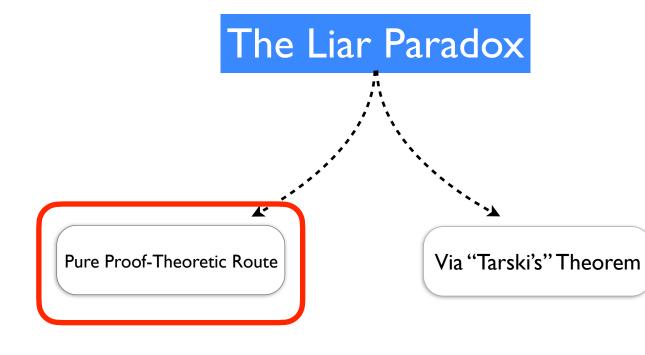






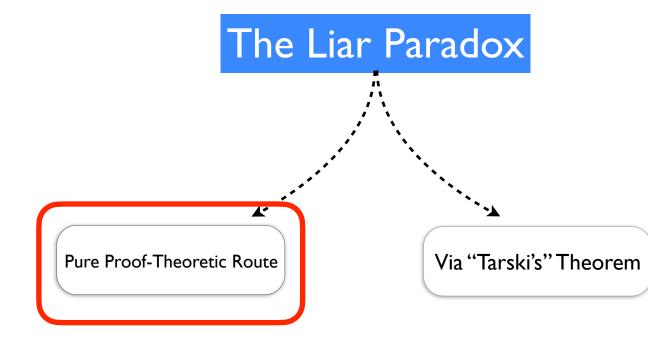






Paul Erdős

"The Book"



Paul Erdős

Ergo, step one: What is LP?

"The Book"

L: This sentence is false.

L: This sentence is false.

Suppose that T(L); then $\neg T(L)$.

L: This sentence is false.

Suppose that T(L); then $\neg T(L)$. Suppose that $\neg T(L)$ then T(L).

"The (Economical) Liar"

L: This sentence is false.

Suppose that T(L); then $\neg T(L)$.

Suppose that $\neg T(L)$ then T(L).

Hence: T(L) iff (i.e., if & only if) $\neg T(L)$.

"The (Economical) Liar"

L: This sentence is false.

Suppose that T(L); then $\neg T(L)$.

Suppose that $\neg T(L)$ then T(L).

Hence: T(L) iff (i.e., if & only if) $\neg T(L)$.

Contradiction!

 \bar{P} : This sentence is unprovable.

 \bar{P} : This sentence is unprovable.

Suppose that \overline{P} is true. Then we can immediately deduce that \overline{P} is provable, because here is a proof: $\overline{P} \to \overline{P}$ is an easy theorem, and from it and our supposition we deduce \overline{P} by modus ponens. But since what \overline{P} says is that it's unprovable, we have deduced that \overline{P} is false under our initial supposition.

 \bar{P} : This sentence is unprovable.

Suppose that \overline{P} is true. Then we can immediately deduce that \overline{P} is provable, because here is a proof: $\overline{P} \to \overline{P}$ is an easy theorem, and from it and our supposition we deduce \overline{P} by *modus ponens*. But since what \overline{P} says is that it's unprovable, we have deduced that \overline{P} is false under our initial supposition.

Suppose on the other hand that \overline{P} is false. Then we can immediately deduce that \overline{P} is unprovable: Suppose for *reductio* that \overline{P} is provable; then \overline{P} holds as a result of some proof, but what \overline{P} says is that it's unprovable; and so we have contradiction. But since what \overline{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \overline{P} is true.

 \bar{P} : This sentence is unprovable.

Suppose that \overline{P} is true. Then we can immediately deduce that \overline{P} is provable, because here is a proof: $\overline{P} \to \overline{P}$ is an easy theorem, and from it and our supposition we deduce \overline{P} by *modus ponens*. But since what \overline{P} says is that it's unprovable, we have deduced that \overline{P} is false under our initial supposition.

Suppose on the other hand that \overline{P} is false. Then we can immediately deduce that \overline{P} is unprovable: Suppose for *reductio* that \overline{P} is provable; then \overline{P} holds as a result of some proof, but what \overline{P} says is that it's unprovable; and so we have contradiction. But since what \overline{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \overline{P} is true.

 $T(\bar{P})$ iff (i.e., if & only if) $\neg T(\bar{P}) = F(\bar{P})$

 \bar{P} : This sentence is unprovable.

Suppose that \overline{P} is true. Then we can immediately deduce that \overline{P} is provable, because here is a proof: $\overline{P} \to \overline{P}$ is an easy theorem, and from it and our supposition we deduce \overline{P} by *modus ponens*. But since what \overline{P} says is that it's unprovable, we have deduced that \overline{P} is false under our initial supposition.

Suppose on the other hand that \overline{P} is false. Then we can immediately deduce that \overline{P} is unprovable: Suppose for *reductio* that \overline{P} is provable; then \overline{P} holds as a result of some proof, but what \overline{P} says is that it's unprovable; and so we have contradiction. But since what \overline{P} says is that it's unprovable, and we have just proved that under our supposition, we arrive at the conclusion that \overline{P} is true.

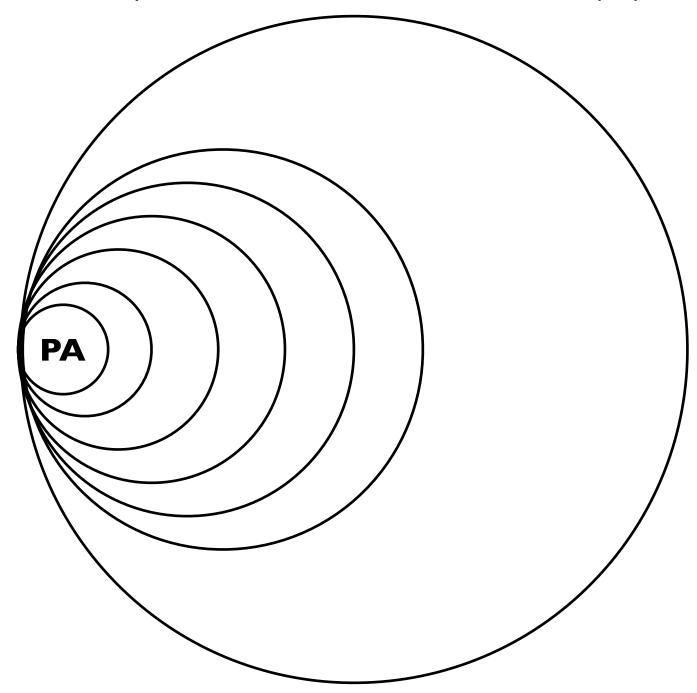
> $T(\overline{P})$ iff (i.e., if & only if) $\neg T(\overline{P}) = F(\overline{P})$ Contradiction!

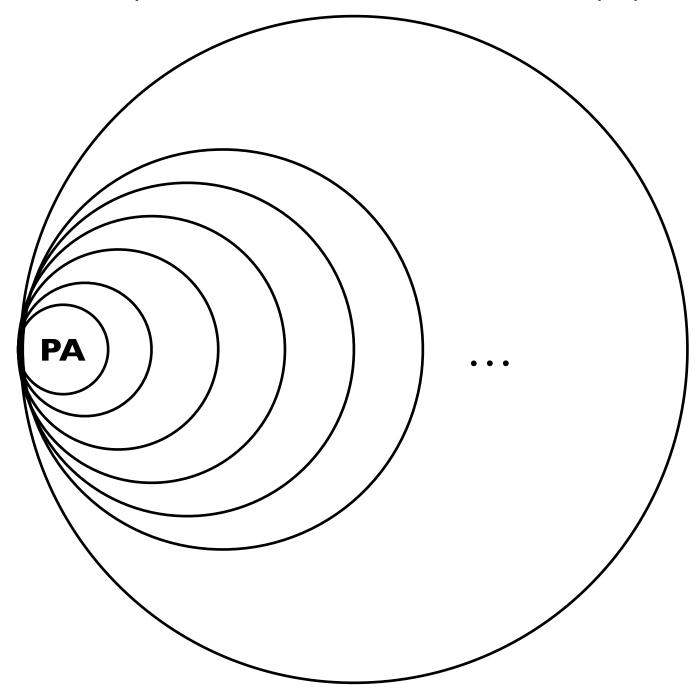
All of this is fishy; but Gödel transformed it into utterly precise, impactful, indisputable reasoning ...

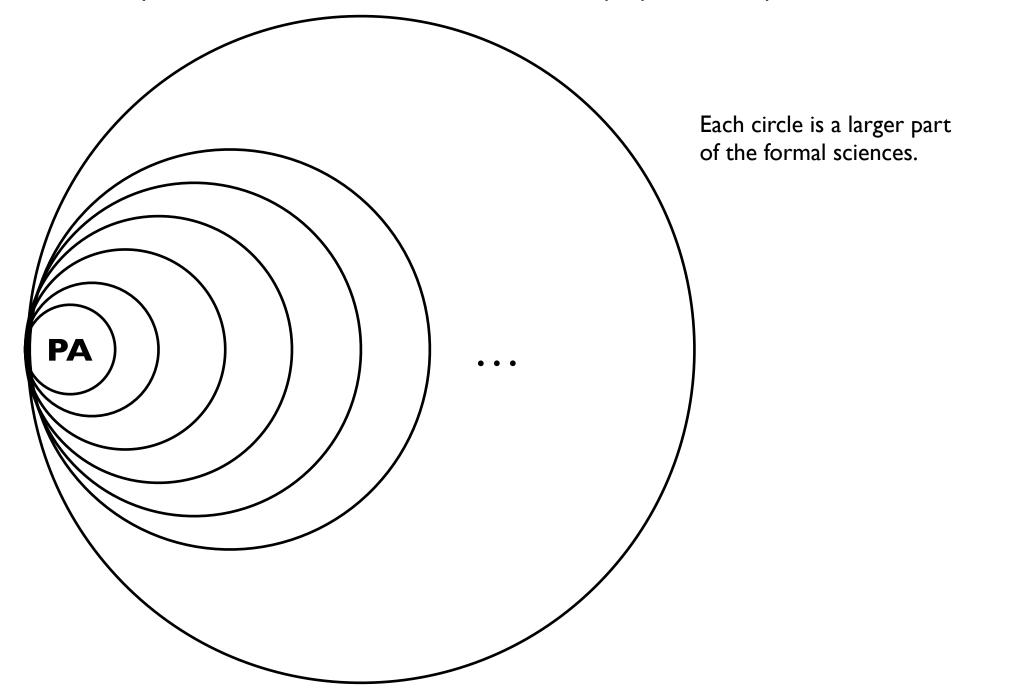
PA (Peano Arithmetic):

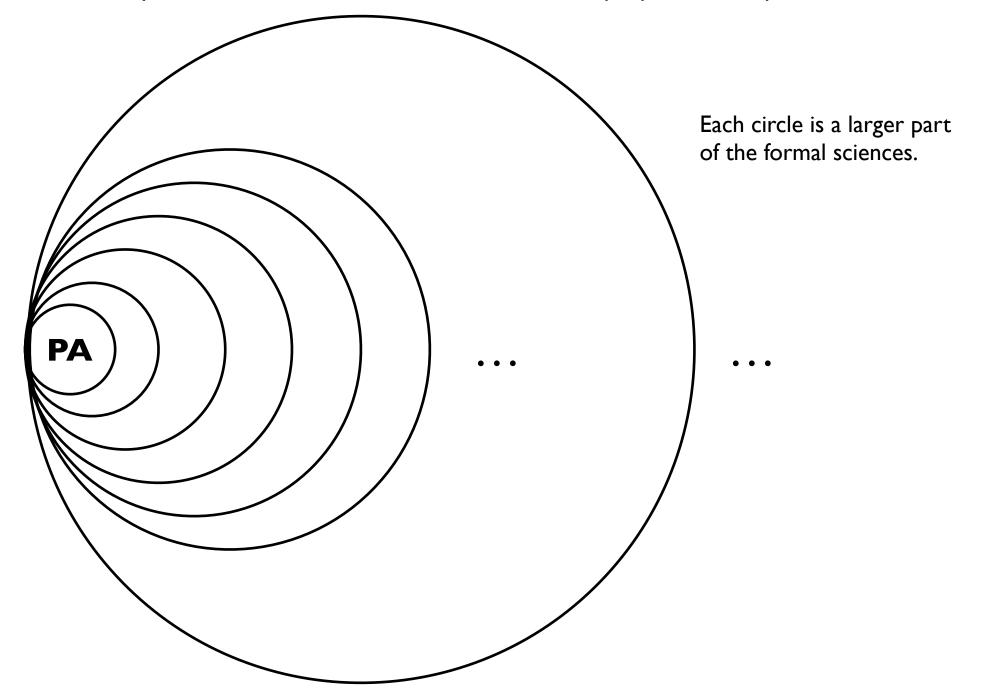
 $\begin{array}{ll} \mathrm{A1} & \forall x (0 \neq s(x)) \\ \mathrm{A2} & \forall x \forall y (s(x) = s(y) \rightarrow x = y) \\ \mathrm{A3} & \forall x (x \neq 0 \rightarrow \exists y (x = s(y))) \\ \mathrm{A4} & \forall x (x + 0 = x) \\ \mathrm{A5} & \forall x \forall y (x + s(y) = s(x + y)) \\ \mathrm{A6} & \forall x (x \times 0 = 0) \\ \mathrm{A7} & \forall x \forall y (x \times s(y) = (x \times y) + x) \end{array}$

And, every sentence that is the universal closure of an instance of $([\phi(0) \land \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x\phi(x)))$ where $\phi(x)$ is open wff with variable x, and perhaps others, free.





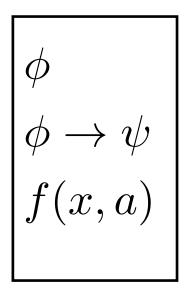




Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

Solution: Gödel numbering!

$$\phi \\ \phi \to \psi \\ f(x, a)$$

Object-level objects in the language of \mathcal{L}_1

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

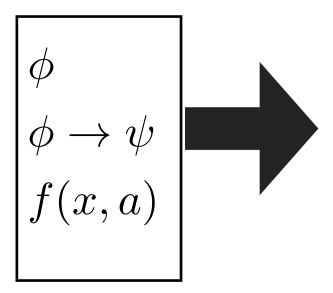
Solution: Gödel numbering!

$$\phi \\ \phi \to \psi \\ f(x, a)$$

Object-level objects in the language of \mathcal{L}_1

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

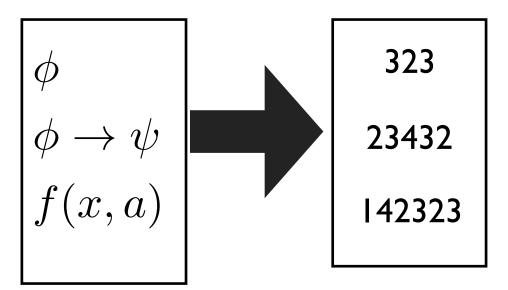
Solution: Gödel numbering!



Object-level objects in the language of \mathcal{L}_1

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

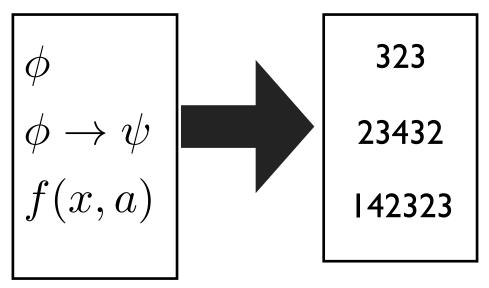
Solution: Gödel numbering!



Object-level objects in the language of \mathcal{L}_1

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

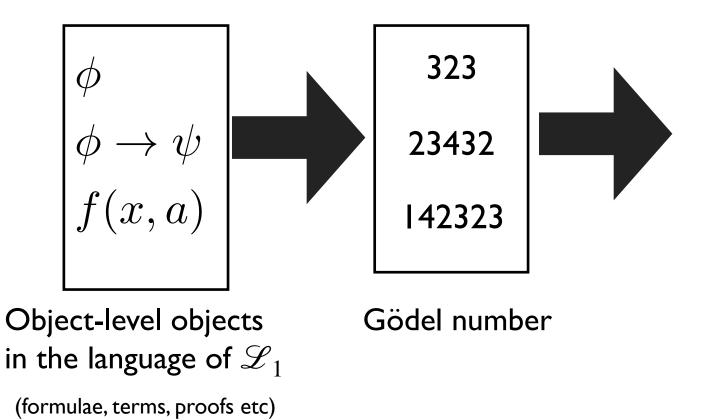
Solution: Gödel numbering!



Object-level objects in the language of \mathcal{L}_1

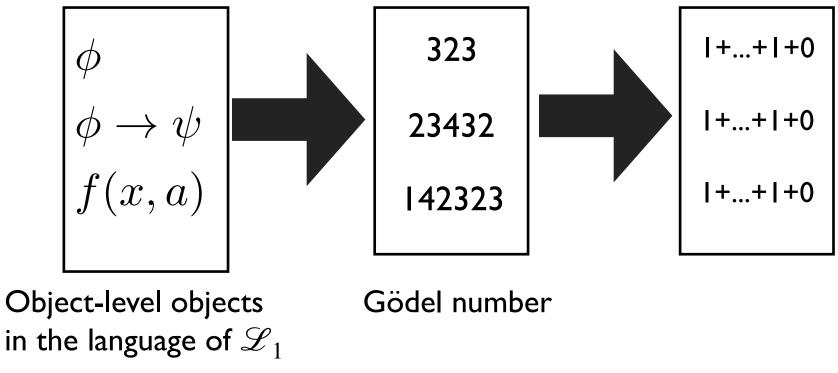
Gödel number

Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

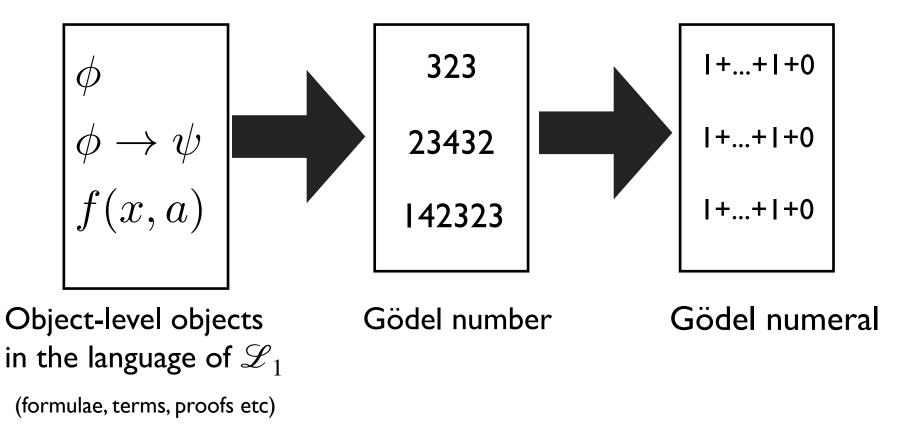


Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?

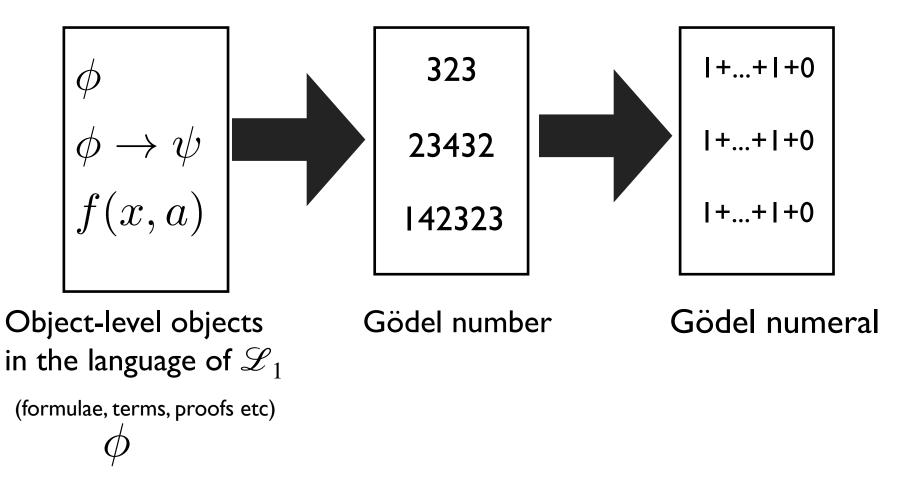
Solution: Gödel numbering!



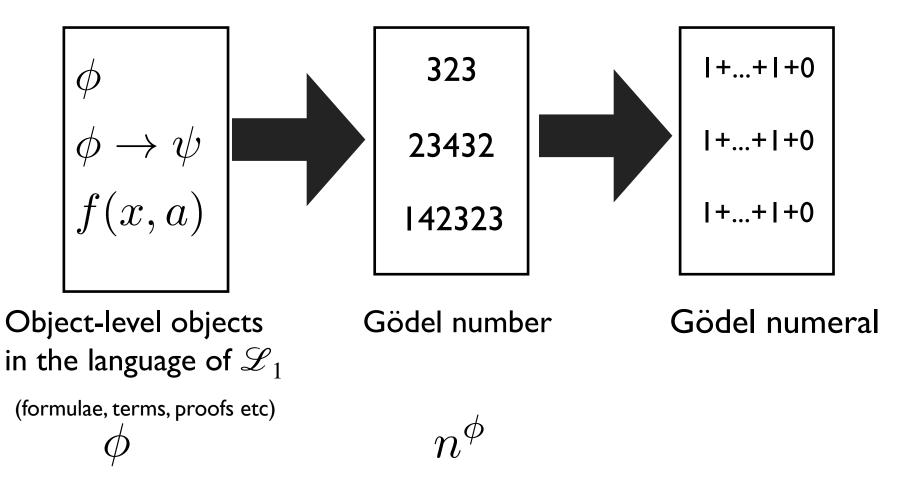
Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



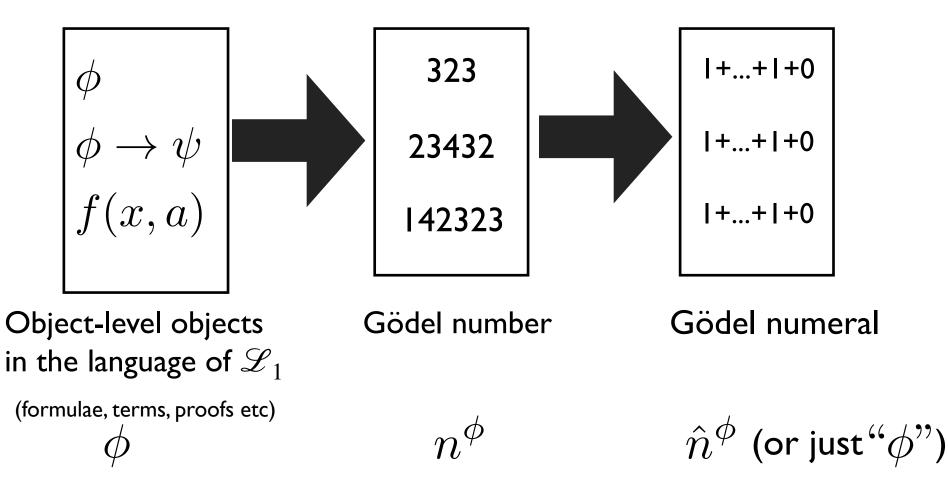
Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



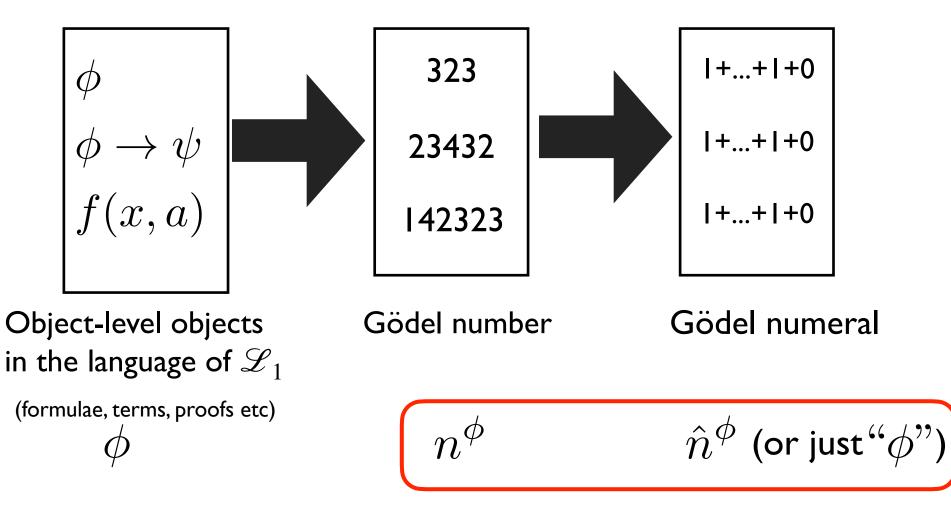
Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



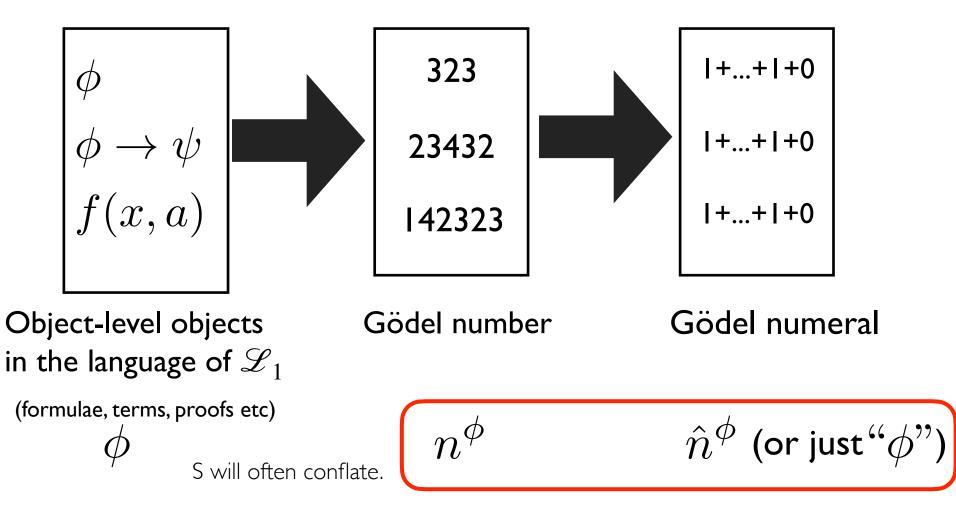
Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



Problem: How do we enable a formula to refer to other formulae and itself (and also other objects like proofs, terms etc.), in a perfectly consistent way?



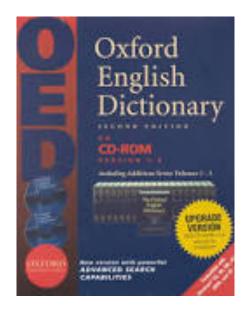
Gödel Numbering, the Easy Way

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from 1, to 2, to ...

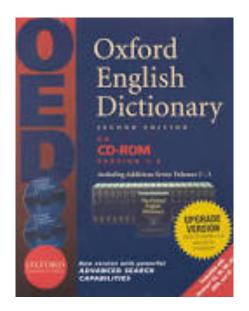
Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from 1, to 2, to ...



Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from 1, to 2, to ...



So, gimcrack is named by some positive integer k. Hence, I can just refer to this word as "k" Or in the notation I prefer: $k^{gimcrack}$.

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from 1, to 2, to ...

Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a number n, and by the same basic lexicographic ordering, every computer program, formula, etc. is named by a number m in a lexicographic ordering going from 1, to 2, to ...

Or, every syntactically valid computer program in Clojure that you will ever write can be uniquely denoted by some number m in the lexicographic ordering of all syntactically valid such programs. So your program π can just be coded as a numeral m^{π} in a formal language that captures arithmetic (i.e., an *arithmetic language*).

Let Φ be a set of arithmetic sentences that is

(i) consistent (i.e. no contradiction $\phi \land \neg \phi$ can be deduced from Φ);

(ii) s.t. an algorithm is available to decide whether or not a given string *u* is a member of Φ; and
(iii) sufficiently expressive to capture all of the operations of a standard computing machine (e.g. a Turing machine, register machine, KU machine, etc.).

Then there is an "undecidable" arithmetic sentence \mathscr{G} from Gödel that can't be proved from Φ , nor can the negation of this sentence (i.e. $\neg \mathscr{G}$) be proved from Φ !

Alas, that's painfully verbose.

Suppose $\Phi \supset \mathbf{PA}$ that is

(i) Con Φ;
(ii) Turing-decidable, and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then there is an arithmetic sentence \mathcal{G} s.t. $\Phi \nvDash \mathcal{G}$ and $\Phi \nvDash \neg \mathcal{G}$.

Suppose $\Phi \supset \mathbf{PA}$ that is

Remember Church's Theorem!

(i) Con Φ;
(ii) Turing-decidable, and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then there is an arithmetic sentence \mathscr{G} s.t. $\Phi \nvDash \mathscr{G}$ and $\Phi \nvDash \neg \mathscr{G}$.

Suppose $\Phi \supset \mathbf{PA}$ that is

Remember Church's Theorem!

(i) Con Φ;
(ii) Turing-decidable, and
(iii) sufficiently expressive to capture all of the operations of a Turing machine (i.e. Repr Φ).

Then there is an arithmetic sentence \mathscr{G} s.t. $\Phi \nvDash \mathscr{G}$ and $\Phi \nvDash \neg \mathscr{G}$.

To prove GI, we shall allow ourselves ...

The Fixed Point Theorem (FPT)

Assume that Φ is a set of arithmetic sentences such that Repr Φ . There for every arithmetic formula $\psi(x)$ with one free variable x, there is an arithmetic sentence ϕ s.t.

 $\Phi \vdash \phi \leftrightarrow \psi(n^{\phi}).$

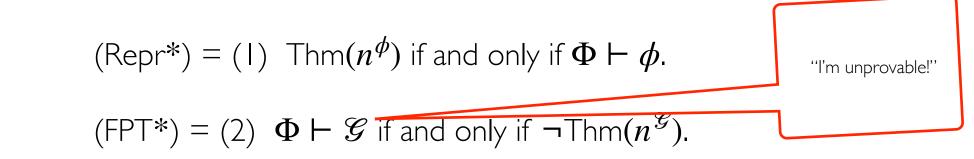
We can intuitively understand ϕ to be saying: ''I have the property ascribed to me by the formula ψ .''

Ok; so let's do it ...

(Repr*) = (1) Thm(n^{ϕ}) if and only if $\Phi \vdash \phi$.

(Repr*) = (1) Thm(n^{ϕ}) if and only if $\Phi \vdash \phi$.

(FPT*) = (2) $\Phi \vdash \mathcal{G}$ if and only if $\neg \text{Thm}(n^{\mathcal{G}})$.



(Repr*) = (1) Thm(
$$n^{\phi}$$
) if and only if $\Phi \vdash \phi$.

"I'm unprovable!"

(FPT*) = (2) $\Phi \vdash \mathscr{G}$ if and only if $\neg \text{Thm}(n^{\mathscr{G}})$.

Now suppose $\Phi \vdash \mathscr{G}$. By right-to-left on (1) we deduce Thm $(n^{\mathscr{G}}) = \neg \neg Thm(n^{\mathscr{G}})$. Then $\Phi \vdash \neg \mathscr{G}$, by right-to-left on (2). But therefore Inc Φ . Since by hypothesis we have Con Φ , contradiction!

(Repr*) = (1) Thm(
$$n^{\phi}$$
) if and only if $\Phi \vdash \phi$.

"I'm unprovable!"

(FPT*) = (2) $\Phi \vdash \mathscr{G}$ if and only if $\neg \text{Thm}(n^{\mathscr{G}})$.

Now suppose $\Phi \vdash \mathscr{G}$. By right-to-left on (1) we deduce Thm $(n^{\mathscr{G}}) = \neg \neg Thm(n^{\mathscr{G}})$. Then $\Phi \vdash \neg \mathscr{G}$, by right-to-left on (2). But therefore Inc Φ . Since by hypothesis we have Con Φ , contradiction!

Suppose on the other hand $\Phi \vdash \neg \mathscr{G}$. Therefore by (2) we deduce $\Phi \vdash \neg \neg Thm(n^{\mathscr{G}})$, i.e. $\Phi \vdash Thm(n^{\mathscr{G}})$. From this and an instantiation of (1) we have $\Phi \vdash \mathscr{G}$. But this entails lnc Φ . Yet our original assumptions include Con Φ , so once again: contradiction! **QED**

"Silly abstract nonsense! There aren't any concrete examples of \mathcal{G} !"

Ah, but e.g.: Goodstein's Theorem!

Ah, but e.g.: Goodstein's Theorem!

The Goodstein Sequence goes to zero!

Pure base *n* representation of a number *r*

• Represent *r* as only sum of powers of *n* in which the exponents are also powers of *n*, etc.

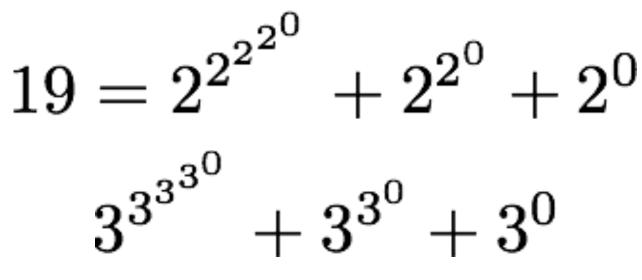
$$266 = 2^{2^{(2^{2^{0}}+2^{0})}} + 2^{(2^{2^{0}}+2^{0})} + 2^{2^{0}}$$

Grow Function

 $Grow_k(n)$:

- 1. Take the pure base k representation of n
- 2. Replace all k by k + 1. Compute the number obtained.
- 3. Subtract one from the number

Example of Grow Grow₂(19)



 $3^{3^{3^{3^{0}}}} + 3^{3^{0}} + 3^{0} - 1$

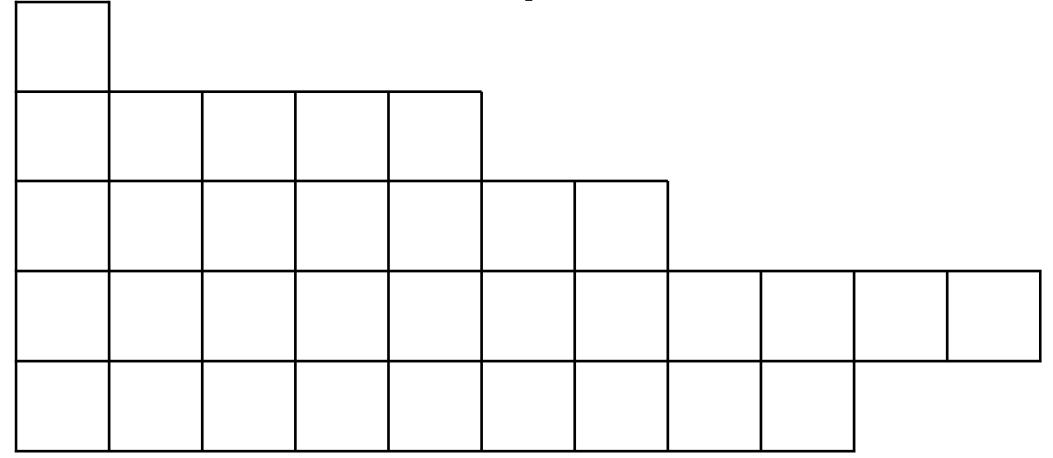
7625597484990

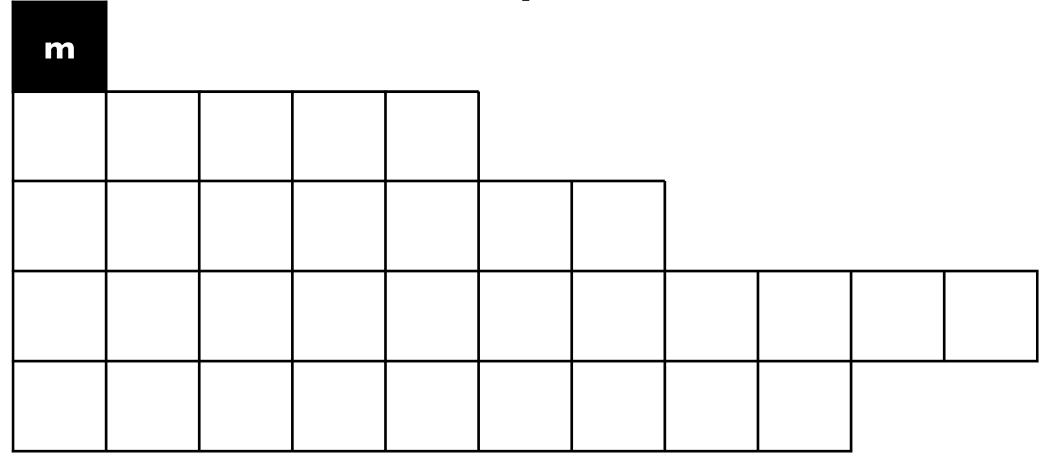
Goodstein Sequence

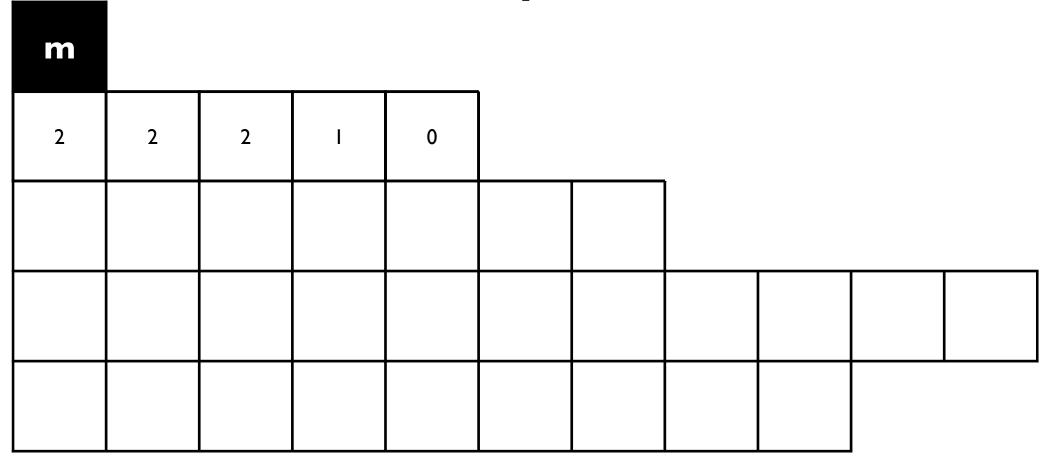
• For any natural number *m*

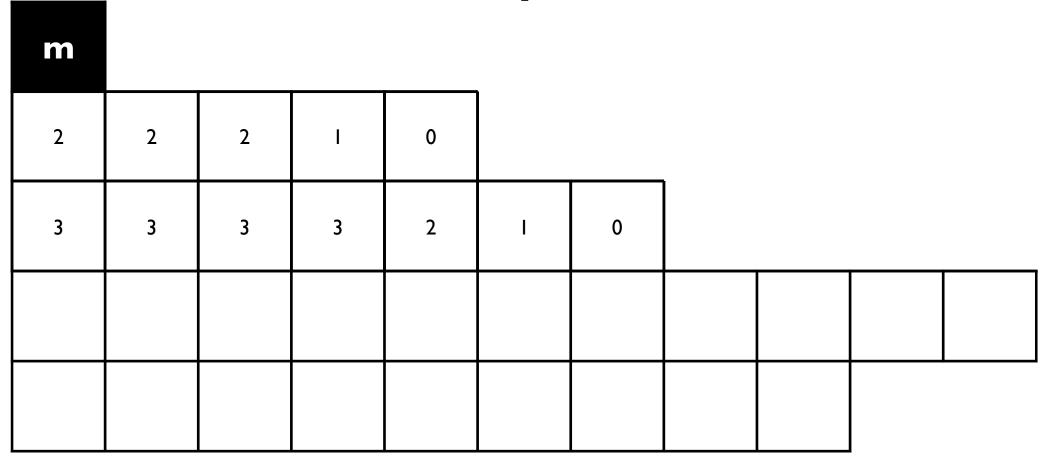
m $Grow_2(m)$ $Grow_3(Grow_2(m))$ $Grow_4(Grow_3(Grow_2(m))),$

•••









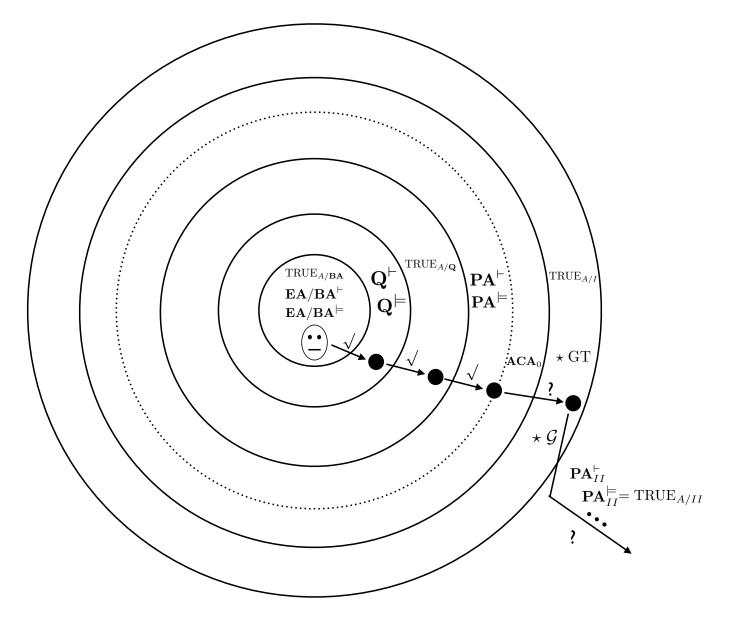
m									
2	2	2	Ι	0					
3	3	3	3	2	I	0			
4	4	26	41	60	83	109	139	 11327 (96th term)	

m										
2	2	2	Ι	0						
3	3	3	3	2	I	0				
4	4	26	41	60	83	109	139		11327 (96th term)	
5	15	~1013	~10155	~10 ²¹⁸⁵	~1036306	10695975	1015151337	•••		

This sequence actually goes to zero!

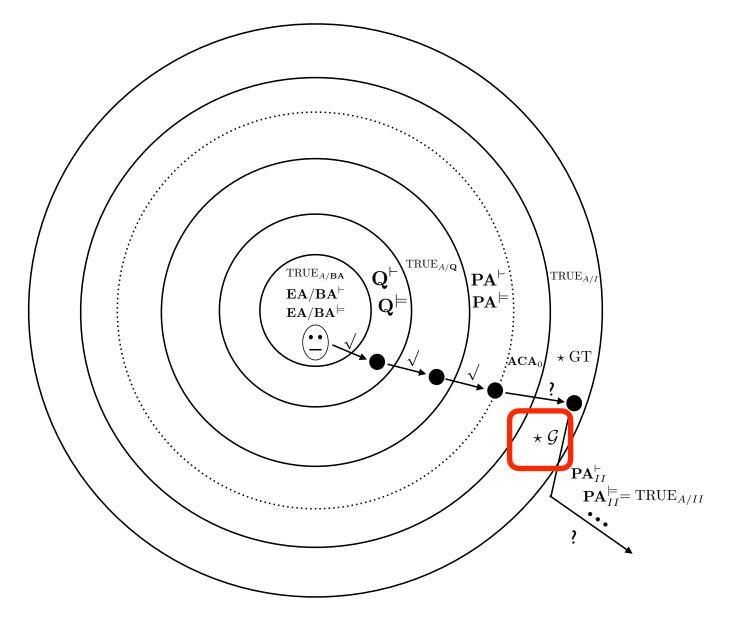
Astrologic:

Rational Aliens Will be on the Same "Race Track"!



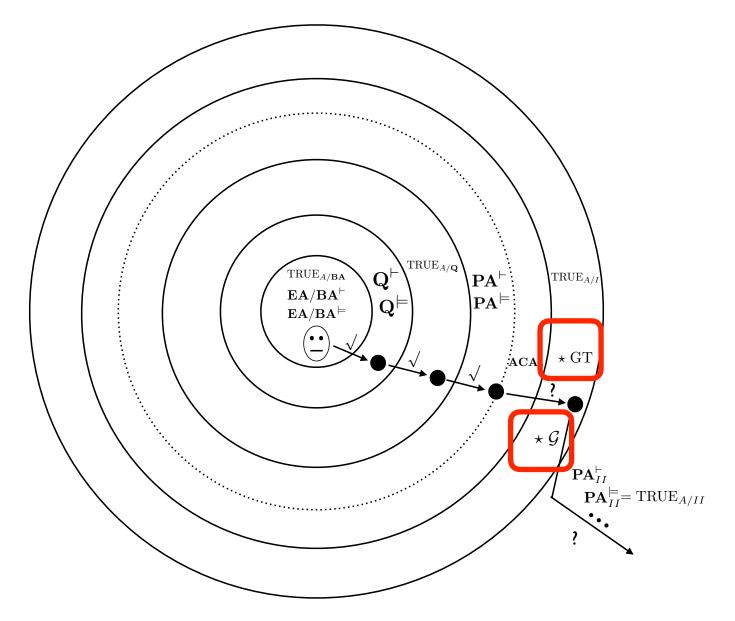
Astrologic:

Rational Aliens Will be on the Same "Race Track"!



Astrologic:

Rational Aliens Will be on the Same "Race Track"!



Could an AI Ever Match Gödel's GI & G2?

Gödel's Great Theorems (OUP)

by Selmer Bringsjord

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

Gödel's Great Theorems (OUP)

by Selmer Bringsjord

- Introduction ("The Wager")
- Brief Preliminaries (e.g. the propositional calculus & FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel's "God Theorem"
- Could a Machine Match Gödel's Genius?

Med nok penger, kan logikk løse alle problemer.