“The Wager,”
Overview of the Book, and
Gödel’s Completeness Theorem

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

9/17/2020
Background Context …
Gödel’s Great Theorems (OUP)
by Selmer Bringsjord

- Introduction (“The Wager”)
- Brief Preliminaries (elementary discrete math, incl. ZOL, FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel’s “God Theorem”
- Could a Machine Match Gödel’s Genius?
• Introduction (“The Wager”)
• Brief Preliminaries (elementary discrete math, incl. ZOL, FOL)
• The Completeness Theorem
• The First Incompleteness Theorem
• The Second Incompleteness Theorem
• The Speedup Theorem
• The Continuum-Hypothesis Theorem
• The Time-Travel Theorem
• Gödel’s “God Theorem”
• Could a Machine Match Gödel's Genius?
Gödel’s Great Theorems (OUP)
by Selmer Bringsjord

- Introduction (“The Wager”)
- Brief Preliminaries (elementary discrete math, incl. ZOL, FOL)
- The Completeness Theorem
- The First Incompleteness Theorem
- The Second Incompleteness Theorem
- The Speedup Theorem
- The Continuum-Hypothesis Theorem
- The Time-Travel Theorem
- Gödel’s “God Theorem”
- Could a Machine Match Gödel’s Genius?
Gödel’s Great Theorems (OUP) by Selmer Bringsjord

• Introduction ("The Wager")
• Brief Preliminaries (elementary discrete math, incl. ZOL, FOL)
• The Completeness Theorem
• The First Incompleteness Theorem
• The Second Incompleteness Theorem
• The Speedup Theorem
• The Continuum-Hypothesis Theorem
• The Time-Travel Theorem
• Gödel’s “God Theorem”
• Could a Machine Match Gödel’s Genius?
Some Timeline Points
Some Timeline Points

1906 Brünn, Austria-Hungary
Some Timeline Points

1906 Brünn, Austria-Hungary
1923 Vienna
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

Undergrad in seminar by Schlick

1906 Brünn, Austria-Hungary
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

1929 Doctoral Dissertation: Proof of Completeness Theorem
 Undergrad in seminar by Schlick

1906 Brünn, Austria-Hungary
Some Timeline Points

1906 Brünn, Austria-Hungary
1923 Vienna
1906 Brünn, Austria-Hungary

1929 Doctoral Dissertation: Proof of Completeness Theorem
Undergrad in seminar by Schlick

1930 Announces (First) Incompleteness Theorem
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

1929 Doctoral Dissertation: Proof of Completeness Theorem
Undergrad in seminar by Schlick

1930 Announces (First) Incompleteness Theorem

1933 Hitler comes to power.
Some Timeline Points

1906 Brünn, Austria-Hungary
1923 Vienna
1929 Doctoral Dissertation: Proof of Completeness Theorem
Undergrad in seminar by Schlick
1930 Announces (First) Incompleteness Theorem
1933 Hitler comes to power.
1940 Back to USA, for good.
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

1929 Doctoral Dissertation: Proof of Completeness Theorem
Undergrad in seminar by Schlick

1930 Announces (First) Incompleteness Theorem

1933 Hitler comes to power.

1940 Back to USA, for good.
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

1929 Doctoral Dissertation: Proof of Completeness Theorem
Undergrad in seminar by Schlick

1930 Announces (First) Incompleteness Theorem

1933 Hitler comes to power.

1940 Back to USA, for good.

1978 Princeton NJ USA.
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

Undergrad in seminar by Schlick

1929 Doctoral Dissertation: Proof of Completeness Theorem

1930 Announces (First) Incompleteness Theorem

1933 Hitler comes to power.

1936 Schlick murdered; Austria annexed; advisor dies

1940 Back to USA, for good.

1978 Princeton NJ USA.

1923 Vienna

1906 Brünn, Austria-Hungary
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

Undergrad in seminar by Schlick

1929 Doctoral Dissertation: Proof of Completeness Theorem

1930 Announces (First) Incompleteness Theorem

1933 Hitler comes to power.

1936 Schlick murdered; Austria annexed; advisor dies

1940 Back to USA, for good.

1978 Princeton NJ USA.

1923 Vienna

1906 Brünn, Austria-Hungary
Some Timeline Points

1906 Brünn, Austria-Hungary

1923 Vienna

1929 Doctoral Dissertation: Proof of Completeness Theorem

1930 Announces (First) Incompleteness Theorem

1933 Hitler comes to power.

1936 Schlick murdered; Austria annexed; advisor dies

1940 Back to USA, for good.

1978 Princeton NJ USA.
Some Timeline Points

1906 Brünn, Austria-Hungary
1923 Vienna
Undergrad in seminar by Schlick
1929 Doctoral Dissertation: Proof of Completeness Theorem
1930 Announces (First) Incompleteness Theorem
1933 Hitler comes to power.
1936 Schlick murdered; Austria annexed; advisor dies
1940 Back to USA, for good.
1978 Princeton NJ USA.

“I have proved that syntax and semantics are fundamentally the same.”

1923 Vienna
1906 Brünn, Austria-Hungary
Preliminaries: Propositional Calculus & First-Order Logic
Actually ...
Actually …

\[\mathcal{L}_0 < \mathcal{L}_1 < \mathcal{L}_2 < \mathcal{L}_3 \ldots \]

Second-order logic.

Third-order logic, which Gödel used for his “God Theorem.”

Zero-order logic; subsumes the propositional calculus.

First-order logic; this is what the Completeness Theorem is about: I.e., this logic is complete.
Actually …

\[L_0 < L_1 < L_2 < L_3 \ldots \]

Second-order logic.

Third-order logic, which Gödel used for his “God Theorem.”

Zero-order logic; subsumes the propositional calculus.

First-order logic; this is what the Completeness Theorem is about: i.e., this logic is complete.
Actually ...

\[L_0 < L_1 < L_2 < L_3 \ldots \]

Zero-order logic; subsumes the propositional calculus.

First-order logic; this is what the Completeness Theorem is about: i.e., this logic is complete.

Second-order logic.

Third-order logic, which Gödel used for his “God Theorem.”

This logic is not complete.
R&W’s Axiomatization of the Propositional Calculus

A1 \((\phi \lor \phi) \rightarrow \phi\)
A2 \(\phi \rightarrow (\phi \lor \psi)\)
A3 \((\phi \lor \psi) \rightarrow (\psi \lor \phi)\)
A4 \((\psi \rightarrow \chi) \rightarrow ((\phi \lor \psi) \rightarrow (\phi \lor \chi))\)
R&W’s Axiomatization of the Propositional Calculus

A1 \((\phi \lor \phi) \rightarrow \phi\)
A2 \(\phi \rightarrow (\phi \lor \psi)\)
A3 \((\phi \lor \psi) \rightarrow (\psi \lor \phi)\)
A4 \((\psi \rightarrow \chi) \rightarrow ((\phi \lor \psi) \rightarrow (\phi \lor \chi))\)

All instances of these schemata are true no matter what the input (true or false). (Agreed?) And indeed every single formula in the propositional calculus that is true no matter what the permutation (as shown in a truth table, e.g.), can be proved (somehow) from these four axioms (using any standard collection of inference schemata). This, Gödel (& later, Newell & Simon, when modern AI was born!) knew, and could use.
R&W’s Axiomatization of the Propositional Calculus

A1 $(\phi \lor \phi) \rightarrow \phi$
A2 $\phi \rightarrow (\phi \lor \psi)$
A3 $(\phi \lor \psi) \rightarrow (\psi \lor \phi)$
A4 $(\psi \rightarrow \chi) \rightarrow ((\phi \lor \psi) \rightarrow (\phi \lor \chi))$

All instances of these schemata are true no matter what the input (true or false). (Agreed?) And indeed every single formula in the propositional calculus that is true no matter what the permutation (as shown in a truth table, e.g.), can be proved (somehow) from these four axioms (using any standard collection of inference schemata). This, Gödel (& later, Newell & Simon, when modern AI was born!) knew, and could use.
Exercise 1:
Verify that these are true-no-matter what in a truth tree in HyperSlate®; then prove using our rules for the prop. calc.; or perhaps better yet, have the oracle prove in HyperSlate®.

\[(\phi \land \psi) \rightarrow (\psi \lor \chi)\]
\[
\phi \rightarrow (\psi \rightarrow \phi)\]
Exercise 1:
Verify that these are true-no-matter what in a truth tree; then prove using our rules for the prop. calc.

\[(\phi \land \psi) \rightarrow (\psi \lor \chi)\]
Exercise 1:
Verify that these are true-no-matter what in a truth tree; then prove using our rules for the prop. calc.

\[(\phi \land \psi) \rightarrow (\psi \lor \chi)\]

Truth Tree showing this formula true no matter what the inputs.
Exercise 1:
Verify that these are true-no-matter what in a truth tree; then prove using our rules for the prop. calc.

\[(\phi \land \psi) \rightarrow (\psi \lor \chi)\]

\[\checkmark\]
Truth Tree showing this formula true no matter what the inputs.

Proof:
Exercise 1:
Verify that these are true-no-matter what in a truth tree; then prove using our rules for the prop. calc.

\[(\phi \land \psi) \rightarrow (\psi \lor \chi)\]

Truth Tree showing this formula true no matter what the inputs.

Proof:
Exercise 1:
Verify that these are true-no-matter what in a truth tree; then prove using our rules for the prop. calc.

\[(\phi \land \psi) \implies (\psi \lor \chi)\]

Truth Tree showing this formula true no matter what the inputs.

Proof:
Exercise 1:

Verify that these are true no matter what in a truth tree; then prove using our rules for the prop. calc.

$$\neg (\phi \land \psi)$$

Truth Tree showing this formula true no matter what the inputs.

Proof: resolution-based!
Exercise 1:

Verify that these are true no matter what in a truth tree; then prove using our rules for the prop. calc.

\[(\phi \land \psi) \rightarrow (\psi \lor \chi)\]

Truth Tree showing this formula true no matter what the inputs.

Proof: resolution-based!
As HyperSlate™ Tutorial
As HyperSlate™ Tutorial
The Grammar of \(\mathcal{L}_0 \) = the Pure Predicate Calculus

<table>
<thead>
<tr>
<th>Formula</th>
<th>(\Rightarrow)</th>
<th>AtomicFormula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Formula Connective Formula)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\neg) Formula</td>
</tr>
</tbody>
</table>

| AtomicFormula | \(\Rightarrow \) | (Predicate Term_1 \ldots Term_k) |
| | | (Term = Term) |

| Term | \(\Rightarrow \) | (Function Term_1 \ldots Term_k) |
| | | Constant |

| Connective | \(\Rightarrow \) | \(\& \) | \(\lor \) | \(\rightarrow \) | \(\leftrightarrow \) |

Predicate	\(\Rightarrow \)	\(P_1 \)	\(P_2 \)	\(P_3 \)	\ldots
Constant	\(\Rightarrow \)	\(c_1 \)	\(c_2 \)	\(c_3 \)	\ldots
Function	\(\Rightarrow \)	\(f_1 \)	\(f_2 \)	\(f_3 \)	\ldots
Some Simple Examples

Formula \Rightarrow AtomicFormula
 | (Formula Connective Formula)
 | \neg Formula

AtomicFormula \Rightarrow (Predicate Term$_1$... Term$_k$)
 | (Term = Term)

Term \Rightarrow (Function Term$_1$... Term$_k$)
 | Constant

Connective \Rightarrow \land | \lor | \rightarrow | \leftrightarrow

Predicate \Rightarrow P_1 | P_2 | P_3 ...
Constant \Rightarrow c_1 | c_2 | c_3 ...
Function \Rightarrow f_1 | f_2 | f_3 ...

Sally likes Bill.
(Likes sally bill)

Sally likes Bill and Bill likes Sally.

Sally likes Bill’s mother.

Sally likes Bill only if Bill’s mother is tall.

Matilda is Bill’s super-smart mother.

5 plus 5 equals the number 10.

…

Lexicon

Can Roger be counted upon to declare: “Yes that sentence is okay!” whenever it’s conforms to this grammar?
Some Simple Examples

<table>
<thead>
<tr>
<th>Formula</th>
<th>(\Rightarrow)</th>
<th>AtomicFormula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mid (\text{Formula} \ \text{Connective} \ \text{Formula}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\mid \neg \ \text{Formula})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AtomicFormula</th>
<th>(\Rightarrow)</th>
<th>((\text{Predicate} \ \text{Term}{1} \ldots \text{Term}{k}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mid (\text{Term} = \text{Term}))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>(\Rightarrow)</th>
<th>((\text{Function} \ \text{Term}{1} \ldots \text{Term}{k}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mid \text{Constant})</td>
<td></td>
</tr>
</tbody>
</table>

| Connective | \(\Rightarrow \) | \(\land \mid \lor \mid \rightarrow \mid \leftrightarrow \) |

<table>
<thead>
<tr>
<th>Likes Predicate</th>
<th>(\Rightarrow)</th>
<th>(P_{1} \mid P_{2} \mid P_{3} \ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(\Rightarrow)</td>
<td>(c_{1} \mid c_{2} \mid c_{3} \ldots)</td>
</tr>
<tr>
<td>Function</td>
<td>(\Rightarrow)</td>
<td>(f_{1} \mid f_{2} \mid f_{3} \ldots)</td>
</tr>
</tbody>
</table>

Sally likes Bill.

(Likes sally bill)

Sally likes Bill and Bill likes Sally.

Sally likes Bill’s mother.

Sally likes Bill only if Bill’s mother is tall.

Matilda is Bill’s super-smart mother.

5 plus 5 equals the number 10.

Can Roger be counted upon to declare: “Yes that sentence is okay!” whenever it’s conforms to this grammar?
Slightly More Complicated Examples

Formula \Rightarrow AtomicFormula
\hspace{20pt}| (Formula Connective Formula)
\hspace{20pt}| \neg Formula

AtomicFormula \Rightarrow (Predicate Term$_1$... Term$_k$)
\hspace{20pt}| (Term = Term)

Term \Rightarrow (Function Term$_1$... Term$_k$)
\hspace{20pt}| Constant

Connective \Rightarrow \land | \lor | \rightarrow | \leftrightarrow

Predicate \Rightarrow P_1 | P_2 | P_3 ...
Constant \Rightarrow c_1 | c_2 | c_3 ...
Function \Rightarrow f_1 | f_2 | f_3 ...
Slightly More Complicated Examples

<table>
<thead>
<tr>
<th>Formula</th>
<th>⇒</th>
<th>AtomicFormula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Formula Connective Formula)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¬ Formula</td>
</tr>
</tbody>
</table>

| AtomicFormula | ⇒ | (Predicate Term₁ ... Termₖ) |
| | | (Term = Term) |

| Term | ⇒ | (Function Term₁ ... Termₖ) |
| | | Constant |

| Connective | ⇒ | ∧ | ∨ | → | ↔ |

Predicate	⇒	P₁	P₂	P₃	...
Constant	⇒	c₁	c₂	c₃	...
Function	⇒	f₁	f₂	f₃	...
Slightly More Complicated Examples

\[
\begin{align*}
\text{Formula} & \Rightarrow \text{AtomicFormula} \\
& \quad | (\text{Formula Connective Formula}) \\
& \quad | \neg \text{Formula}
\end{align*}
\]

\[
\begin{align*}
\text{AtomicFormula} & \Rightarrow (\text{Predicate } \text{Term}_1 \ldots \text{Term}_k) \\
& \quad | (\text{Term} = \text{Term})
\end{align*}
\]

\[
\begin{align*}
\text{Term} & \Rightarrow (\text{Function } \text{Term}_1 \ldots \text{Term}_k) \\
& \quad | \text{Constant}
\end{align*}
\]

\[
\begin{align*}
\text{Connective} & \Rightarrow \land \mid \lor \mid \rightarrow \mid \leftrightarrow
\end{align*}
\]

\[
\begin{align*}
\text{Predicate} & \Rightarrow P_1 \mid P_2 \mid P_3 \ldots \\
\text{Constant} & \Rightarrow c_1 \mid c_2 \mid c_3 \ldots \\
\text{Function} & \Rightarrow f_1 \mid f_2 \mid f_3 \ldots
\end{align*}
\]

If Sally likes Bill then Sally likes Bill. Sally likes Bill’s mother, or not.
Slightly More Complicated Examples

\[
\text{If Sally likes Bill then Sally likes Bill.}
\]
\[
\text{Sally likes Bill’s mother, or not.}
\]
\[
\text{Sally likes Bill and Bill likes Jane, only if Bill likes Jane.}
\]
Slightly More Complicated Examples

Formula	\Rightarrow	AtomicFormula
		(Formula Connective Formula)
		\neg Formula

| AtomicFormula | \Rightarrow | (Predicate Term$_1$... Term$_k$) |
| | | (Term = Term) |

| Term | \Rightarrow | (Function Term$_1$... Term$_k$) |
| | | Constant |

| Connective | \Rightarrow | \land | \lor | \rightarrow | \leftrightarrow |

Predicate	\Rightarrow	P_1	P_2	P_3 ...
Constant	\Rightarrow	c_1	c_2	c_3 ...
Function	\Rightarrow	f_1	f_2	f_3 ...

If Sally likes Bill then Sally likes Bill.

Sally likes Bill’s mother, or not.

Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill’s smart mother is a mother.
Slightly More Complicated Examples

If Sally likes Bill then Sally likes Bill.
Sally likes Bill’s mother, or not.
Sally likes Bill and Bill likes Jane, only if Bill likes Jane.
Bill’s smart mother is a mother.

\[
\begin{align*}
\text{Formula} & \Rightarrow \text{AtomicFormula} \\
& \quad \mid (\text{Formula Connective Formula}) \\
& \quad \mid \neg \text{Formula} \\
\text{AtomicFormula} & \Rightarrow (\text{Predicate Term}_1 \ldots \text{Term}_k) \\
& \quad \mid (\text{Term} = \text{Term}) \\
\text{Term} & \Rightarrow (\text{Function Term}_1 \ldots \text{Term}_k) \\
& \quad \mid \text{Constant} \\
\text{Connective} & \Rightarrow \land \mid \lor \mid \rightarrow \mid \leftrightarrow \\
\text{Predicate} & \Rightarrow P_1 \mid P_2 \mid P_3 \ldots \\
\text{Constant} & \Rightarrow c_1 \mid c_2 \mid c_3 \ldots \\
\text{Function} & \Rightarrow f_1 \mid f_2 \mid f_3 \ldots
\end{align*}
\]
Slightly More Complicated Examples

If Sally likes Bill then Sally likes Bill.
Sally likes Bill’s mother, or not.
Sally likes Bill and Bill likes Jane, only if Bill likes Jane.
Bill’s smart mother is a mother.

These are all true, yes; but can they be proved?!
Slightly More Complicated Examples

If Sally likes Bill then Sally likes Bill.

Sally likes Bill’s mother, or not.

Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill’s smart mother is a mother.

These are all true, yes; but can they be proved?!

Yes!
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

there exists at least one thing x such that …
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

there exists at least one thing x such that …

for all x, it’s the case that …
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus simpliciter

$\exists x \ldots$ there exists at least one thing x such that \ldots

for all x, it’s the case that \ldots
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

\[
\lim_{x \to a} f(x) = L
\]

iff

\[
\forall \epsilon (\epsilon > 0 \rightarrow \exists \delta (\delta > 0 \land \forall x (d(x,a) < \delta \rightarrow d(f(x),L) < \epsilon))
\)
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus, Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus $simpliciter$

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

$$\lim_{x \to a} f(x) = L$$

$$(\forall \epsilon > 0 \rightarrow \exists \delta > 0 \land \forall x (d(x, a) < \delta \rightarrow d(f(x), L) < \epsilon))$$
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus, Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

$\lim_{x \to a} f(x) = L$

(\forall \varepsilon > 0 \rightarrow \exists \delta > 0 \land \forall x (d(x, a) < \delta \rightarrow d(f(x), L) < \varepsilon))$

Every natural number is greater than or equal to zero.
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

$\exists x$. . . there exists at least one thing x such that . . .

$\forall x$. . . for all x, it’s the case that . . .

\[
\lim_{x \to a} f(x) = L
\]

$(\forall \epsilon > 0 \rightarrow \exists \delta > 0 \land \forall x (d(x, a) < \delta \rightarrow d(f(x), L) < \epsilon))$

Every natural number is greater than or equal to zero.

$\forall x (x \geq 0)$
But Now the Deeper Challenge:

Add Two Quantifiers to the Pure Predicate Calculus, Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus simpliciter

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

\[
\lim_{x \to a} f(x) = L
\]

Every natural number is greater than or equal to zero.

$\forall x (x \geq 0)$

There’s a positive integer greater than any positive integer.
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus simpliciter

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

\[
\lim_{x \to a} f(x) = L
\]

Every natural number is greater than or equal to zero.

$\forall x (x \geq 0)$

There’s a positive integer greater than any positive integer.

$\exists x \forall y (y < x)$
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus, Which Yields L_1 First-order Logic = Predicate Calculus simpliciter

$\exists x$. . . there exists at least one thing x such that . . .

$\forall x$. . . for all x, it’s the case that . . .

$\lim_{x \to a} f(x) = L$

(forall (ϵ) (if (> ϵ 0)
 (exists (δ) (and (> δ 0)
 (forall (x) (if (< (dist x a) δ)
 (< (dist (f x) L) ϵ)))))))))

Every natural number is greater than or equal to zero.

$\forall x (x \geq 0)$

$\exists x \forall y (y < x)$
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus \textit{simpliciter}

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

\[
\lim_{x \to a} f(x) = L
\]

(forall (ϵ) (if (> ϵ 0)
 (exists (δ) (and (> δ 0)
 (forall (x) (if (< (dist x a) δ)
 (< (dist (f x) L) ϵ))))))))

$\forall \epsilon (\epsilon > 0 \rightarrow \exists \delta (\delta > 0 \wedge \forall x (d(x, a) < \delta \rightarrow d(f(x), L) < \epsilon)))$

Every natural number is greater than or equal to zero.

$\forall x (x \geq 0)$
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus, Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus simpliciter

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

$$\lim_{x \to a} f(x) = L$$

Every natural number is greater than or equal to zero.
$\forall x (x \geq 0)$

Every positive integer x is less-than-or-equal-to a positive integer y.
But Now the Deeper Challenge:
Add Two Quantifiers to the Pure Predicate Calculus,
Which Yields \mathcal{L}_1 First-order Logic = Predicate Calculus *simpliciter*

$\exists x \ldots$ there exists at least one thing x such that …

$\forall x \ldots$ for all x, it’s the case that …

Every natural number is greater than or equal to zero.

$$\forall x (x \geq 0)$$

Every positive integer x is less-than-or-equal-to a positive integer y.

$$\forall x \exists y (x \leq y) \quad \forall x \exists y (\leq (x, y))$$

$$\lim_{x \to a} f(x) = L$$

$$(\forall \epsilon \in \mathbb{R}) (\epsilon > 0) (\exists \delta \in \mathbb{R}) (\delta > 0) (\forall x \in \mathbb{R}) (d(x, a) < \delta) \implies d(f(x), L) < \epsilon$$
The Shoulders Available to Gödel for Standing Upon …
Completeness Theorem for The Propositional Calculus

Let \(\Gamma \) be a set \(\{\phi_1, \phi_2, \ldots\} \) of formulae in the propositional calculus. Then either all of \(\Gamma \) are satisfiable, or the conjunction up to and including the point \(k \) (i.e. \(\phi_1 \land \phi_2 \land \ldots \land \phi_k \)) of failure is refutable.
Completeness Theorem for The Propositional Calculus

Let Γ be a set $\{\phi_1, \phi_2, \ldots\}$ of formulae in the propositional calculus. Then either all of Γ are satisfiable, or the conjunction up to and including the point k (i.e. $\phi_1 \land \phi_2 \land \ldots \land \phi_k$) of failure is refutable.
Completeness Theorem for The Propositional Calculus

Let Γ be a set $\{\phi_1, \phi_2, \ldots\}$ of formulae in the the propositional calculus. Then either all of Γ are satisfiable, or the conjunction up to and including the point k (i.e. $\phi_1 \land \phi_2 \land \ldots \land \phi_k$) of failure is refutable.

Let Γ be a set $\{\phi_1, \phi_2, \ldots\}$ of formulae in the the propositional calculus. Then either all of Γ can be simultaneously true in some scenario, or the conjunction up to and including the point k (i.e. $\phi_1 \land \phi_2 \land \ldots \land \phi_k$) of failure is refutable (i.e. $\vdash \neg(\phi_1 \land \phi_2 \land \ldots \land \phi_k)$).
What does the Completeness Theorem say?
Completeness Theorem as an Equation

In first-order logic: NECESSARY TRUTH = PROVABILITY.
Completeness Theorem, More Precisely Put

For every first-order statement ϕ: ϕ is a necessary or absolute truth (i.e. true in any scenario whatsoever) only if ϕ is provable.
And the version Gödel targeted, and proved:

For every first-order statement ϕ: Either ϕ is true in some scenario, or ϕ is refutable (= it’s negation $\neg\phi$ can be proved).

GCT
The Proof-Sketch
The Proof-Sketch

To prove the theorem in the case of first-order logic \((= \mathcal{L}_1)\), we need to show that given any set \(\Gamma\) of formulae in first-order logic, either there's a scenario on which every member of this set is true; otherwise, there is a refutation of the set, i.e. a proof from the set to an outright contradiction \(\phi \land \neg\phi\). We can accomplish this by finding a procedure \(\mathcal{P}\) that first takes the set in question and goes hunting for a scenario that does the trick. If the scenario is found, we're done. But, if such a scenario can't be found, then our procedure moves on to find a proof of a contradiction from \(\Gamma\)!

How?! The procedure \(\mathcal{P}\) is the building out of a truth tree! If all the branches in the tree close, then the finding of a proof of a contradiction uses resolution, and the resolution guarantee. The guarantee is that if you have a set of formulae that can’t be true in any scenario, resolution applied to the set finds a contradiction \(\bot = \zeta \land \neg\zeta = \{\}\). QED
The Proof-Sketch

To prove the theorem in the case of first-order logic \((= \mathcal{L}_1)\), we need to show that given any set \(\Gamma\) of formulae in first-order logic, either there's a scenario on which every member of this set is true; otherwise, there is a refutation of the set, i.e. a proof from the set to an outright contradiction \(\phi \land \neg \phi\). We can accomplish this by finding a procedure \(\mathcal{P}\) that first takes the set in question and goes hunting for a scenario that does the trick. If the scenario is found, we're done. But, if such a scenario can't be found, then our procedure moves on to find a proof of a contradiction from \(\Gamma\)!

How?! The procedure is the building out of a truth tree! If all the branches in the tree are open, then our procedure moves on to find a proof of a contradiction uses \textit{resolution}, and the \textit{resolution guarantee}. The guarantee is that if you have a set of formulae that can’t be true in any scenario, resolution applied to the set finds a contradiction \(\perp = \zeta \land \neg \zeta = \{\}\). \textbf{QED}
\[\Gamma := \{ p_1 \rightarrow p_2, \ p_3 \land p_4, \ \neg p_2, \ p_4 \rightarrow p_1, \ldots \} \]

Therefore, there is no scenario in which all of the formulae are true!
\[\Gamma := \{ p_1 \rightarrow p_3, \; p_2, \; p_4 \rightarrow p_6, \; p_5, \; p_7 \rightarrow p_9, \; p_8, \; \ldots \} \]

Therefore, since we can travel to infinity, there is a scenario in which all of the formulae are true: any infinite path down will do.
Ah, but can we travel to infinity? The assumption that there is an infinite branch here is based on König’s Lemma …
Toward König’s Lemma as Train Travel
“To infinity and beyond!”
König’s Lemma (train-travel version)

In a one-way train-travel map with finitely many options leading from each station, if there are partial paths forward of every finite length, there is an infinite path (= a path “to infinity”).
Exercise 2:
Is there an algorithm for traveling this way?
Exercise 2:
Is there an algorithm for traveling this way?

No. This strategy for travel is beyond the reach of constructive mathematics/standard computation.
Exercise 2:
Is there an algorithm for traveling this way?

No. This strategy for travel is beyond the reach of constructive mathematics/standard computation.

(Does it not then follow, assuming that humans can find and “use” a provably correct strategy for this travel, that humans can’t be fundamentally computing machines?)
NY-Centric Proof of the Lemma
(that there is an infinite branch)

Proof: We are seeking to prove that there is an infinite path (= that you can keep going forward forever = that the number of your stops forward are the size of \mathbb{Z}^+).

To begin, assume the antecedent of the theorem (i.e. that, (1), there are finitely many options leading from each station, and that, (2), in the map there are partial paths forward of every finite size).

Now, you are standing at Penn Station (S_1), facing k options. At least one of these options must lead to partial paths of arbitrary size (the size of any m in \mathbb{Z}^+). (Sub-Proof: Suppose otherwise for indirect proof. Then there is some positive integer n that places a ceiling on the size of partial paths that can be reached. But this violates (2) — contradiction.) Proceed to choose one of these options that lead to partial paths of arbitrary size. You are now standing at a new station (S_2), one stop after Penn Station. At least one of these options must lead to partial parts of arbitrary size (the size of any m in \mathbb{Z}^+). (Sub-Proof: Suppose otherwise for indirect proof …)

Since you can iterate this forever, you’ll be on an infinite trip to infinity! Buzz will be happy.

QED
THE DISCOVERY OF MY COMPLETENESS PROOFS

LEON HENKIN

Dedicated to my teacher, Alonzo Church, in his 91st year.

§1. Introduction. This paper deals with aspects of my doctoral dissertation1 which contributed to the early development of model theory. What was of use to later workers was less the results of my thesis, than the method by which I proved the completeness of first-order logic—a result established by Kurt Gödel in his doctoral thesis 18 years before.2

The ideas that fed my discovery of this proof were mostly those I found in the teachings and writings of Alonzo Church. This may seem curious, as his work in logic, and his teaching, gave great emphasis to the constructive character of mathematical logic, while the model theory to which I contributed is filled with theorems about very large classes of mathematical structures, whose proofs often by-pass constructive methods.

Another curious thing about my discovery of a new proof of Gödel’s completeness theorem, is that it arrived in the midst of my efforts to prove an entirely different result. Such “accidental” discoveries arise in many parts of scientific work. Perhaps there are regularities in the conditions under which such “accidents” occur which would interest some historians, so I shall try to describe in some detail the accident which befell me.

Received November 17, 1995, and in revised form, January 4, 1996.
The Discovery of My Completeness Proofs

Leon Henkin

Dedicated to my teacher, Alonzo Church, in his 91st year.

§1. Introduction. This paper deals with aspects of my doctoral dissertation\(^1\) which contributed to the early development of model theory. What was of use to later workers was less the results of my thesis, than the method by which I proved the completeness of first-order logic—a result established by Kurt Gödel in his doctoral thesis 18 years before.\(^2\)

The ideas that fed my discovery of this proof were mostly those I found in the teachings and writings of Alonzo Church. This may seem curious, as his work in logic, and his teaching, gave great emphasis to the constructive character of mathematical logic, while the model theory to which I contributed is filled with theorems about very large classes of mathematical structures, whose proofs often by-pass constructive methods.

Another curious thing about my discovery of a new proof of Gödel's completeness theorem, is that it arrived in the midst of my efforts to prove an entirely different result. Such “accidental” discoveries arise in many parts of scientific work. Perhaps there are regularities in the conditions under which such “accidents” occur which would interest some historians, so I shall try to describe in some detail the accident which befell me.

Received November 17, 1995, and in revised form, January 4, 1996.
But How’d He Handle All of \mathcal{L}_1?
But How’d He Handle All of L_1?

Gödel proves the lemma that if the GCT holds for formula of degree j, GCT holds of formulae of degree $j+1$. So the challenge reduces to formulae of degree 1:
But How’d He Handle All of \mathcal{L}_1?

Gödel proves the lemma that if the GCT holds for a formula of degree j, GCT holds of formulae of degree $j+1$. So the challenge reduces to formulae of degree 1:

$$\forall x_1, x_2, \ldots, x_k \exists y_1, y_2, \ldots, y_n \phi(x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_n)$$
Gödel proves the lemma that if the GCT holds for formula of degree j, GCT holds of formulae of degree $j+1$. So the challenge reduces to formulae of degree 1:

$$\forall x_1, x_2, \ldots, x_k \exists y_1, y_2, \ldots, y_n \phi(x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_n)$$

How? By ingenious tree-building, which starts by creating an enumeration of new constants $c = c_1, c_2, \ldots$ that becomes our “universe of discourse”/“domain of quantification.” Note that from c we can algorithmically generate an enumeration of tuples $c^t = \langle c \rangle_1, \langle c \rangle_2, \ldots$ of any finite size. (Those of size k will work for the x-variables, and those of size n will work for the y-variables.) And now we can build a BIG tree at the level of the pure predicate calculus, looking for either a scenario that makes our formula true by traveling with Buzz to infinity, or getting all branches closed, in which case we turn back to the resolution guarantee! Let’s make sense of this by hand on paper …
Gödel's Completeness Theorem

\[\phi \equiv \forall x_1, x_2, \ldots, x_k \exists y_1, y_2, \ldots, y_m \phi(x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_m) \]

\[G := \phi \]

For every tuple of the size of the \(x \) variables (i.e. size \(k \)) in this proposition:

\[G^k := \langle c_1^k, c_2^k, c_3^k, \ldots \rangle \]

And for every tuple of the size of the \(y \) variables (i.e. size \(m \)) in this proposition:

\[G^m := \langle c_1^m, c_2^m, c_3^m, \ldots \rangle \]

And here's my enumeration:

\[\langle c_1^k, c_2^m, c_3^k, c_4^m, \ldots \rangle \]

In summary:

11 12 13 14 15	\ldots	\langle c_1^k \rangle
16 17 18 19 20	\ldots	\langle c_2^m \rangle
21 22 23 24 25	\ldots	\langle c_3^k \rangle
31 32 33 34 35	\ldots	\langle c_4^m \rangle
41 42 43 44 45	\ldots	\ldots
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots

Do you see a way to travel to \(\infty \) in a tree based on some enumeration of this infinite array?
slutten
Small Steps Toward Hypercomputation via Infinitary Machine Proof Verification and Proof Generation

Naveen Sundar Govindaraju, John Licato, and Selmer Bringsjord
Department of Computer Science
Department of Cognitive Science
Rensselaer AI & Reasoning Laboratory
govian@rpi.edu • licaj@rpi.edu • selmer@rpi.edu
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180 USA

Abstract. After setting a context based on two general points (that humans appear to reason in infinitary fashion, and that human hypercomputers aren’t currently available to directly model and replicate such infinitary reasoning), we set a humble engineering goal of taking initial steps toward a computing machine that can reason in infinitary fashion. The initial steps consist in our outline of automated proof-verification and proof-discovery techniques for theorems independent of PA that seem to require an understanding and use of infinitary concepts. We specifically focus on proof-discovery techniques that make use of a marriage of analogical and deductive reasoning (which we call analogico-deductive reasoning).

A Context: Infinitary Reasoning, Hypercomputation, and Humble Engineering

Bringsjord has repeatedly pointed out the obvious fact that the behavior of formal scientists, taken at face value, involve various infinitary structures and reasoning. (We say “at face value” to simply indicate we don’t presuppose some view that denies the reality of infinite entities routinely involved in the formal sciences.) For example, in (Bringsjord & van Hooft 2003), Bringsjord himself operates as such a scientist in presenting an infinitary paradox which to his knowledge has yet to be solved. And he has argued that apparently infinitary behavior constitutes a grave challenge to AI and the Church-Turing Thesis (e.g., see Bringsjord & Aronskas 2006, Bringsjord & Zenzen 2003). More generally, Bringsjord conjectures that every human-produced proof of a theorem independent of Peano Arithmetic (PA) will make use of infinitary structures and reasoning, when these structures are taken at face value.

We have ourselves designed logico-computational logics for handling infinitary reasoning (e.g., see the treatment of the infesitate wise-man puzzle: Aronskas & Bringsjord 2005), but this work simply falls back on the human ability to carry out induction on the natural numbers: it doesn’t dissect and explain this ability. Finally, it must be admitted by all that there is simply no systematic, comprehensive model or framework anywhere in the formal/computational approach to understanding human knowledge and intelligence that provides a theory about how humans are able to engage with infinitary structures. This is revealed perhaps most clearly when one studies the fruit produced by the part of formal AI devoted to producing discovery systems: such fruit is embarrassingly finitary (e.g., see Shilliday 2009).

Given this context, we are interested in exploring how one might give a machine the ability to reason in infinitary fashion. We are not saying that we have figured out how to give such ability to a computing machine. Our objective here is much more humble and limited: it is to push forward the attempt to engineer a computing machine that has the ability to reason in infinitary fashion. Ultimately, if such an attempt to succeed, the computing machine in question will presumably be capable of outright hypercomputation. But the fact is that from an engineering perspective, we don’t know how to create and harness a hypercomputer. So what we must first try to do, as explained in (Bringsjord & Zenzen 2003), is pursue engineering that initiates the attempt to engineer a hypercomputer, and takes the first few steps. In the present paper, the engineering is aimed specifically at giving a computing machine the ability to, in a limited but well-defined sense, reason in infinitary fashion. Even more specifically, our engineering is aimed at building a machine capable of at least providing a strong case for a result which, in the human sphere, has hitherto required use of infinitary techniques.

1 A weaker conjecture along the same line has been verummed by Isaacson, and is elegantly discussed by Smith (2007).
Needs Understanding of Ordinal Numbers …
Needs Understanding of Ordinal Numbers …

$$19_1 = 2^{2^{2^0}} + 2^{2^0} + 2^0 < \omega^{\omega^0} + \omega^0 + \omega^0$$
Needs Understanding of Ordinal Numbers …

\[19_1 = 2^{2^{2^{0}}} + 2^{0} + 2^{0} < \omega^{\omega^{\omega^{0}}} + \omega^{0} + \omega^{0} \]

\[19_2 = 3^{3^{3^{3^{0}}}} + 3^{3^{0}} + 3^{0} - 1 < \omega^{\omega^{\omega^{\omega^{0}}}} + \omega^{\omega^{0}} + \omega^{0} - 1 \]
Needs Understanding of Ordinal Numbers …

\[19_1 = 2^{2^{2^{2^0}}} + 2^{2^0} + 2^0 < \omega_{\omega_{\omega^0}} + \omega^0 + \omega^0 \]

\[19_2 = 3^{3^{3^{3^0}}} + 3^{3^0} + 3^0 - 1 < \omega_{\omega_{\omega^0}} + \omega^0 + \omega^0 - 1 \]

\[19_3 = 4^{4^{4^{4^0}}} + 4^{4^0} - 1 < \omega_{\omega_{\omega^0}} + \omega^0 - 1 \]
Needs Understanding of Ordinal Numbers …

\[19_1 = 2^{2^{2^0}} + 2^0 + 2^0 < \omega^\omega^\omega + \omega^0 + \omega^0 \]

\[19_2 = 3^{3^{3^0}} + 3^0 + 3^0 - 1 < \omega^\omega^\omega + \omega^0 + \omega^0 - 1 \]

\[19_3 = 4^{4^{4^0}} + 4^0 - 1 < \omega^\omega^\omega + \omega^0 - 1 \]

\[19_4 = 5^{5^{5^0}} + 5^0 + 5^0 - 1 < \omega^\omega^\omega + \omega^0 + \omega^0 - 1 \]
Needs Understanding of Ordinal Numbers …

\[19_1 = 2^{2^{2^0}} + 2^0 + 2^0 < \omega^{\omega^0} + \omega^0 + \omega^0\]

\[19_2 = 3^{3^{3^0}} + 3^0 + 3^0 - 1 < \omega^{\omega^0} + \omega^0 + \omega^0 - 1\]

\[19_3 = 4^{4^{4^0}} + 4^0 - 1 < \omega^{\omega^0} + \omega^0 - 1\]

\[19_4 = 5^{5^{5^0}} + 5^0 + 5^0 - 1 < \omega^{\omega^0} + \omega^0 + \omega^0 - 1\]

\[19_5 = 6^{6^{6^0}} + 6^0 < \omega^{\omega^0} + \omega^0\]
19_1 = 2^{2^{2^0}} + 2^{2^0} + 2^0 < \omega^{\omega^0} + \omega^0 + \omega^0

19_2 = 3^{3^{3^0}} + 3^{3^0} + 3^0 - 1 < \omega^{\omega^0} + \omega^0 + \omega^0 - 1

19_3 = 4^{4^{4^0}} + 4^{4^0} - 1 < \omega^{\omega^0} + \omega^0 - 1

19_4 = 5^{5^{5^0}} + 5^0 + 5^0 - 1 < \omega^{\omega^0} + \omega^0 + \omega^0 - 1

19_5 = 6^{6^{6^0}} + 6^0 < \omega^{\omega^0} + \omega^0

\vdots

Needs Understanding of Ordinal Numbers …
Needs Understanding of Ordinal Numbers …

\[19_1 = 2^{2^2^0} + 2^0 + 2^0 < \omega^\omega^0 + \omega^0 + \omega^0 \]

\[19_2 = 3^{3^{3^0}} + 3^0 + 3^0 - 1 < \omega^\omega^\omega^0 + \omega^0 + \omega^0 - 1 \]

\[19_3 = 4^{4^{4^0}} + 4^0 - 1 < \omega^\omega^\omega^\omega^0 + \omega^0 - 1 \]

\[19_4 = 5^{5^{5^0}} + 5^0 + 5^0 - 1 < \omega^\omega^\omega^\omega^\omega^0 + \omega^0 + \omega^0 - 1 \]

\[19_5 = 6^{6^{6^0}} + 6^0 < \omega^\omega^\omega^\omega^\omega^\omega^0 + \omega^0 \]

\[\vdots \]
Needs Understanding of Ordinal Numbers …

191 = 2^{2^{2^0}} + 2^0 + 2^0 < \omega^0 + \omega^0 + \omega^0

192 = 3^{3^{3^0}} + 3^0 + 3^0 - 1 < \omega^0 + \omega^0 + \omega^0 - 1

193 = 4^{4^{4^0}} + 4^0 - 1 < \omega^0 + \omega^0 - 1

194 = 5^{5^{5^0}} + 5^0 + 5^0 - 1 < \omega^0 + \omega^0 + \omega^0 - 1

195 = 6^{6^{6^0}} + 6^0 < \omega^0 + \omega^0

\vdots

strictly decreasing
\[
19_1 = 2^{2^{2^0}} + 2^0 + 2^0 < \omega^{\omega^0} + \omega^0 + \omega^0 \\
19_2 = 3^{3^{3^0}} + 3^0 + 3^0 - 1 < \omega^{\omega^{\omega^0}} + \omega^0 + \omega^0 - 1 \\
19_3 = 4^{4^{4^0}} + 4^0 - 1 < \omega^{\omega^{\omega^{\omega^0}}} + \omega^0 - 1 \\
19_4 = 5^{5^{5^0}} + 5^0 + 5^0 - 1 < \omega^{\omega^{\omega^{\omega^{\omega^0}}}} + \omega^0 + \omega^0 - 1 \\
19_5 = 6^{6^{6^0}} + 6^0 < \omega^{\omega^{\omega^{\omega^{\omega^{\omega^0}}}}} + \omega^0 \\
\vdots \\
\text{strictly decreasing}
\]
Ordinal Numbers ...
Yet, Conjecture (C)
(see “Isaacson’s Conjecture”)
Yet, Conjecture (C)
(see “Isaacson’s Conjecture”)

In order to produce a rationally compelling proof of any true sentence S formed from the symbol set of the language of arithmetic, but independent of PA, it’s necessary to deploy concepts and structures of an irreducibly infinitary nature.
Yet, Conjecture (C)
(see “Isaacson’s Conjecture”)

In order to produce a rationally compelling proof of any true sentence S formed from the symbol set of the language of arithmetic, but independent of PA, it’s necessary to deploy concepts and structures of an irreducibly infinitary nature.

If this is right, and computing machines can’t use irreducibly infinitary techniques, they’re in trouble — or: there won’t be a Singularity.