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Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

1;;‘uunon:al thinking
s on the power and
limits of computing
processes, whether they are exe-
cuted by a human or by a
machine. Computational
methods and models give us
the courage to solve prob-
lems and design systems that no one of us would
be capable of tackling alone. Computational think-
ing confronts the riddle of machinc intelligence:
What can humans do better than computers? and
Whart can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is 2 fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
rational cthinking to every child’s analytical abilicy.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking.

Computational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Compurtational thinking
includes a range of mental twols thar reflect the
breadch of the field of computer science.

Having to solve a problem, we might
ask: How difficule is it to solve? and Wha's the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-
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cisely. Stating the difficulty of 2 problem accounts

for the underlying power of the machine—the com- |’

puting device that will run the solution. We must
consider the machine’s instruction set, its resource
consmmts.andmopcnmgcnvmnmcm
In solving a problem efficiently, we might further

ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-

mulating a scemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.
is parallel processing, It is interpreting code as data
anddauzscodc.ltlstypcchcdnngasthcgcn:d
ization of dimensional It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
xsmmgnmngboththccnstmdpowtrofmdm
addressing and procedure call. It is pro-
gram not just for correctness and but for
aesthetics, and a system’s design for simplicity and

Compurational is using abstraction and
dooomposmonwben a large complex rask
ordmgsmgahrg:mpkxsysmlzuxpamm
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, .mdinﬂumalu;cdo::{la
system without understanding its every Iris

ibility to
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Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

2 nouns (‘0’, ‘17),

3 verbs (‘move’, ‘print’, ‘halt’),

3 grammar rules (sequence, selection, repetition),
and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.
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Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:
2 nouns (‘0%, “17),
3 verbs (‘move’, ‘print’, ‘halt’),
3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

— Rapaport, “phics" book
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For just “logic programming,” and a vintage approach that
goes back to circa 1970, restrict this to a FOL or a fragment
thereof, and use resolution as the only inference schema.
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Example #1:
Descartes’ Cogito ...



Cogito Ergo Sum

Sort system

forall [x] (or (Name x) (Thing x))))

forall (x) (iff (Name x) (not (Thing x)))) )

forall (x) (if (Thing x) (or (Real x) (Fictional x)))))

forall (x) (if (Thing x) (iff (Real x) (not (Fictional x))))))

(Believes! I
(Believes! I
(Believes! I
(Believes! I

Fictional




Cogito Ergo Sum

(Believes! I (forall (y) (if (Name y)
(iff (DeReExists y)
(exists x (and (Real x) (= x (xy)))))) )

De re existence is real existence

(Believes! I (not (DeReExists I) )

| believe | don’t really exist



Cogito Ergo Sum

Instance of axiom schema

(Believes!
I
(forall [?agent]
(if (Perceives! I (Believes! ?agent (not (DeReExists ?agent))))
(Real (x ?agent))) )

| believe that if | perceive an agent believe something then | believe that agent is real



Cogito Ergo Sum

{:name "Cogito Ergo Sum"
:description "A formaliztion of Descartes' Cogito Ergo Sum"
rassumptions {

S1 (Believes! I (forall [x] (or (Name x) (Thing x))))

S2 (Believes! I (forall (x) (iff (Name x) (not (Thing x)))) )

S3 (Believes! I (forall (x) (if (Thing x) (or (Real x) (Fictional x)))))

S4 (Believes! I (forall (x) (if (Thing x) (iff (Real x) (not (Fictional x))))))

Al (Believes! I (forall (x) (if (Name x) (Thing (x x)))))

A2 (Believes! I (forall (y) (if (Name y) (iff (DeReExists y) (exists x (and (Real x) (= x (xy))))))))

TN
rrs

Suppose (Believes! I (not (DeReExists I)))
given (Believes! I (Name I))

ﬁé}ceive—the—belief (Believes! I (Perceives! I (Believes! I (not (DeReExists I)))))
If_P_B (Believes!
I
forall [?agent]
(if (Perceives! I (Believes! ?agent (not (DeReExists ?agent))))
(Real (x ?agent)))))

I
:goal (and (Believes! I (not (Real (x I))))
(Believes! I (Real (x I)) ))




Cogito Ergo Sum

{:name "Cogito Ergo Sum"
:description "A formaliztion of Descartes' Cogito Ergo Sum"
rassumptions {

S1 (Believes! I (forall [x] (or (Name x) (Thing x))))

S2 (Believes! I (forall (x) (iff (Name x) (not (Thing x)))) )

S3 (Believes! I (forall (x) (if (Thing x) (or (Real x) (Fictional x)))))

S4 (Believes! I (forall (x) (if (Thing x) (iff (Real x) (not (Fictional x))))))

Al (Believes! I (forall (x) (if (Name x) (Thing (x x)))))

A2 (Believes! I (forall (y) (if (Name y) (iff (DeReExists y) (exists x (and (Real x) (= x (xy))))))))

TN
rr

Suppose (Believes! I (not (DeReExists I)))
given (Believes! I (Name I))

ﬁé}ceive—the—belief (Believes! I (Perceives! I (Believes! I (not (DeReExists I)))))
If_P_B (Believes!
I
forall [?agent]
(if (Perceives! I (Believes! ?agent (not (DeReExists ?agent))))
(Real (x ?agent)))))

}

:goal (and (Believes! I (not (Real (% I)))) X
(Believes! I (Real (x I)) )) absurd belief




Example #3:
Poe’s Detective Dupin ...



. Shadow Prover

The Purloined Letter

{:name "The Purloined Letter"
:description "Dupin's reasoning as he goes through the case"
:assumptions {1 (Believes! g (hide m elaborate))
(Believes! d (or (hide m elaborate) (hide m plain)))
(Believes! m (Believes! g (hide m elaborate) )
(if (Believes! m (Believes! g (hide m elaborate)) ) (hide m plain))
(if (Believes! m (Believes! g (hide m plain))’ (hide m elaborate))
(Believes! m (Believes! g (hide m elaborate) )
(Believes! d (if (Believes! m (Believes! g (hide m elaborate))) (hide m plain)))
(Believes! d (if (Believes! m (Believes! g (hide m plain))) (hide m elaborate)))
(Believes! d (Believes! m (Believes! g (hide m elaborate)) )}

LCoo~NOOULAE WN

:goal (Believes! d (hide m plain))}

55 ms



Example #3:

Ethical Control via a Program
Based on DCEC* + ShadowProver
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%y = zeroth-order logic

Deductive



The Universe of Logics
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Informal Version of DDE

the action is not forbidden (where we assume an ethical hier-
archy such as the one given by Bringsjord [2017], and require
that the action be neutral or above neutral in such a hierarchy);

the net utility or goodness of the action is greater than some
positive amount ;

the agent performing the action intends only the good effects;
the agent does not intend any of the bad effects;

the bad effects are not used as a means to obtain the good ef-
fects; and

if there are bad effects, the agent would rather the situation be
different and the agent not have to perform the action. That is,
the action is unavoidable.
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Syntax

Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

clipped : Moment x Fluent x Moment — Formula

initiates : Event x Fluent x Moment — Formula

terminates : Event X Fluent x Moment — Formula

| prior : Moment x Moment — Formula

x:S|c:S| f(try... 1)

t:Formula| =6 [ 0AY |9V | P(at,0) | K(a1,0) | C(2,0)
S(a,b,t,0) | S(a,t,0) | B(a,t,0) | D(a,t,Holds(f,t)) | I(a,t,)
O(a,t,9, (—)happens(action(a*,a),t’))



Syntax

S ::= Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

clipped : Moment x Fluent x Moment — Formula

initiates : Event x Fluent x Moment — Formula

terminates : Event X Fluent x Moment — Formula

| prior : Moment x Moment — Formula
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Syntax

S ::= Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

= clipped : Moment x Fluent x Moment — Formula
initiates : Event X Fluent x Moment — Formula
terminates : Event x Fluent x Moment — Formula
( prior : Moment x Moment — Formula
“Univer Univers i tuo=x:8|c: S| ftr,... tn)

sa al ;
! Cogitiv t:Formula| =0 | 0AY [0V Y [P(a,r,0) | K(a,z,0) | C(2,0)
0 := ¢ S(a,b,1,9) | S(a,7,0) | B(a,,9) | D(a,t,Holds(f,1")) | L(a,t,$)

O(a,t,9, (—)happens(action(a*,a),t’))

crss e o K(a,,I), TFO, 1<t B(a,t;,T), THO, 1 <t
. Rl

K(a7t27¢) B(a7t27¢)
(R,]

.5 centuries C(t,P(a,t,0) — K(a,t,0)) Ra] C(t,K(a,t,9) — B(a,t,0))

Ct,0)t<t;...t<t, K(a,t,0)
(R3]
K(al,tl,...K(a,,,t,,,q))...) q)

&z
. Inference Schemata
W

[R4]

[Rs]
[Rs]

C(Z,K(d,l] 7¢1 — ¢2)) — K(aat27¢l) - K(a1137¢2)

C(Z7B(a7t1a¢l - ¢2)) - B(d,lz,(})]) - B(a7t37¢2)
[Ri]

C(t,C(t1,01 = ¢2)) = C(t2,01) — C(83,02)
[Rs]

[Ro]

C(t,Vx. § — Ox —1]) C(2,01 <> G2 — —0, = )

[R1o]

Clt,[p1 A Aw = 0] = 01— ... > 0 = ¥])
S(s,h,t,0) R I(a,t,happens(action(a*,a),t')) -
B(h,t,B(s,2,0)) [Ri2] P(a,t,happens(action(a*,a),1)) [Ris]
B(a,1,0) B(a,1,0(a,1,0,%)) O(a,1,0,%)

K(a,t,1(a,t,%))

[R14]












Formal Conditions for DDE

F;1 o carried out at ¢ is not forbidden. That is:

r'/-0 (a, t,0,—happens (action(a, a), t) )

F, The net utility is greater than a given positive real 7:

H
r- ) ( Y ufy)- Y, ﬂ(f,y)) >y

y=t+1 \ feo)' feos!

F3, The agent a intends at least one good effect. (F, should
still hold after removing all other good effects.) There is

at least one fluent f, in o’ with p(f,,y) > 0, or f;, in

of’ with 1 (fp,) <0, and some y with < y < H such
that the following holds:

if, € oc?’t I(a,t,Holds(fg,y))
'+ \%

3, € a2 I(a,t,ﬁHolds(fb,y))

F3, The agent a does not intend any bad effect. For all fluents

fp in o with u(fy,y) <0, or f, in o’ with u(f,y) >
0, and for all y such that t < y < H the following holds:

T - 1(a,t, Holds(f3,) ) and

I (a, t, ﬁHOldS(fgay))

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of [> above, hold
here. One such permutation is shown below. For any bad
fluent fj holding at #1, and any good fluent fg holding at
some #;, such that ¢ < t1,# < H, the following holds:

k- (Hozds(fb,tl) ,HoldS(ngZ))
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