On Quantificational Modal Logic (S5-centric)

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Intro to Logic 4/12/2020 ver 1112202100NY

Logistics ...

Status? Some discussion ...

🔏 Menu 🗴	IFLAI2F20_PAPERTOPICS	? 📘 🔎 Review 😤 Share 🔇 Submit 🅑 History 🗩 Cl
🕒 🖿 📩 🛛 🥔 🖞	Source Rich Text	C Recompile 👻 🖹 🕹
-	_	
✓ File outline	 24 at the very outset of the paper itself. Specifically, the claim must 25 be expressed in the first paragraph of the paper as a clear 26 declarative sentence in English, as is the case in the present 	for the respective promotion or supression of the same. I intend to model this using an ordinal set of activities A which citizens can participate in only if they satisfy some requirement, e.g. having sufficient capital. The set being ordinal means that a citizen will choose to participate in activities in order until they cannot perform further activities due to exhausted means (again noting that each activity maintains its own satisfaction conditions).

- Nov 5: Pure General Logic Programming, Functional Programming, Turing-Completeness, and Beyond. We review the basic paradigms of computer programming. For the imperative case, we use the simple imperative language of (Davis, Sigal & Weyuker 1994), and also discuss register machines, Turing machines (again), KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued.
- Nov 9: Hypergraphical Proof and Programming in HyperSlate[®]. We here introduce the availability of writing Clojure functions in the context of proofs in HyperSlate[®].
- Nov 12: Quantified Modal Logic. We here explore quantified S5, the infamous Barcan Formula. HyperSlate[®] is used.
- Nov 16: Killer Robots, **D**, and Beyond in HyperSlate[®] to DCEC. We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates.

• Nov 5: Pure General Logic Programming, Functional Programming, Turing-Completeness, and Beyond. We review the basic paradigms of computer programming. For the imperative case, we use the simple imperative language of (Davis, Sigal & Weyuker 1994), and also discuss register machines, Turing machines (again), KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued.

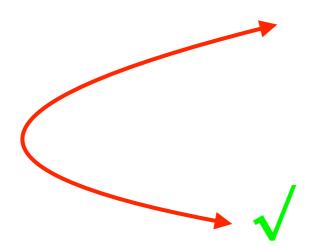
- Nov 9: Hypergraphical Proof and Programming in HyperSlate[®]. We here introduce the availability of writing Clojure functions in the context of proofs in HyperSlate[®].
- Nov 12: Quantified Modal Logic. We here explore quantified S5, the infamous Barcan Formula. HyperSlate[®] is used.
- Nov 16: Killer Robots, **D**, and Beyond in HyperSlate[®] to DCEC. We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates.

• Nov 5: Pure General Logic Programming, Functional Programming, Turing-Completeness, and Beyond. We review the basic paradigms of computer programming. For the imperative case, we use the simple imperative language of (Davis, Sigal & Weyuker 1994), and also discuss register machines, Turing machines (again), KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued.

- Nov 9: Hypergraphical Proof and Programming in HyperSlate[®]. We here introduce the availability of writing Clojure functions in the context of proofs in HyperSlate[®].
- Nov 12: Quantified Modal Logic. We here explore quantified S5, the infamous Barcan Formula. HyperSlate[®] is used.
- Nov 16: Killer Robots, **D**, and Beyond in HyperSlate[®] to DCEC. We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates.

• Nov 5: Pure General Logic Programming, Functional Programming, Turing-Completeness, and Beyond. We review the basic paradigms of computer programming. For the imperative case, we use the simple imperative language of (Davis, Sigal & Weyuker 1994), and also discuss register machines, Turing machines (again), KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued.

- Nov 9: Hypergraphical Proof and Programming in HyperSlate[®]. We here introduce the availability of writing Clojure functions in the context of proofs in HyperSlate[®].
- Nov 12: Quantified Modal Logic. We here explore quantified S5, the infamous Barcan Formula. HyperSlate[®] is used.
- Nov 16: Killer Robots, **D**, and Beyond in HyperSlate[®] to DCEC. We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates.



Q3

Consider a new propositional modal logic: *propositional provability logic*, or for short, **PPL**. We here make use of the familiar "box" and "diamond" we have seen in our propositional modal logics so far, which of course are available in HS[®]. In **PPL** we read $\Box \phi$ as saying that ϕ is provable, and $\Diamond \phi$ is simply an abbreviation for $\neg \Box \neg \phi$. In order to have **PPL** available to us for exploration in HS[®], we simply use **K**, and add to our workspace a formula that expresses this new principle:

(Löb) If it's provable that (if ϕ is provable, then ϕ), then ϕ is provable.

Let <(Löb)> denote this formula. Now here are the two tasks for you in Q3:

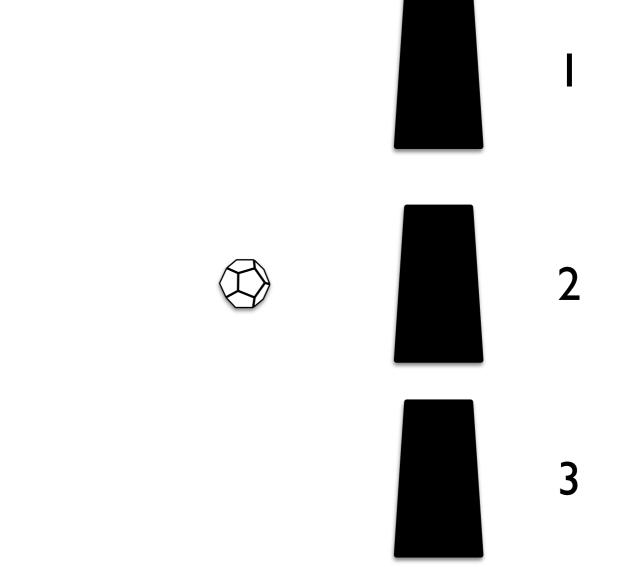
(i) Can the characteristic axiom of **S4** be proved in **PPL**? Prove your answer. (Max one page.)

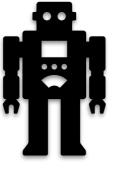
(ii) It would seem that a more interesting and (given what those in the business of proving things do) accurate logic would be *quantified* provability logic (**QPL**), since after all, all interesting theorems have quantifiers and relation symbols in them. After you are clear on what **QPL** amounts to formally, answer the following question, and justify your answer with cogent argumentation.

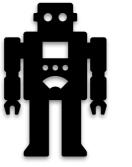
Question: Can an artificial agent can be engineered which productively uses **QPL**? Max one page.

Return to Return-to-Blinky

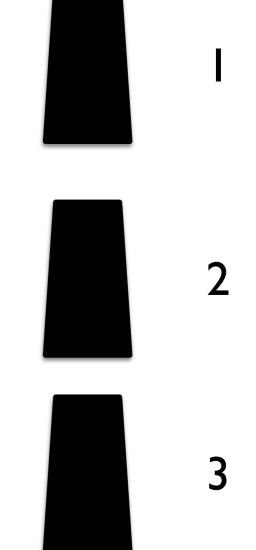
• • •



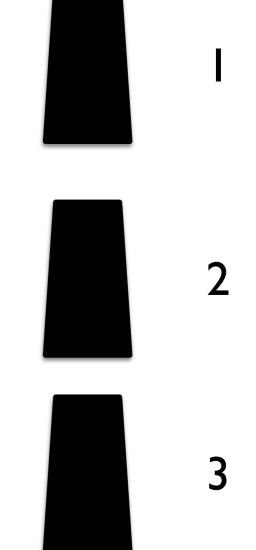


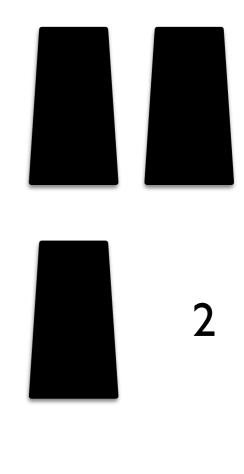


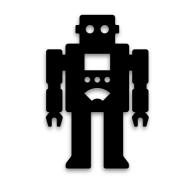


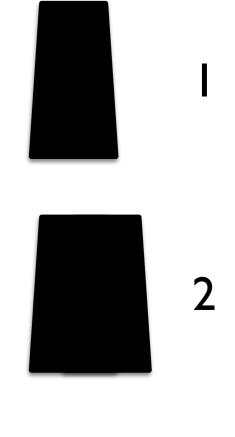


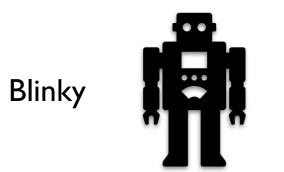


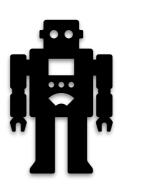


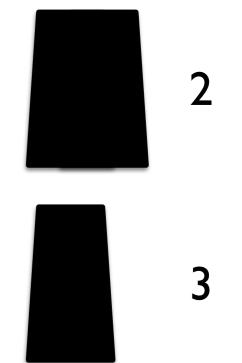


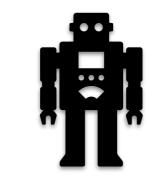


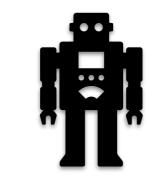




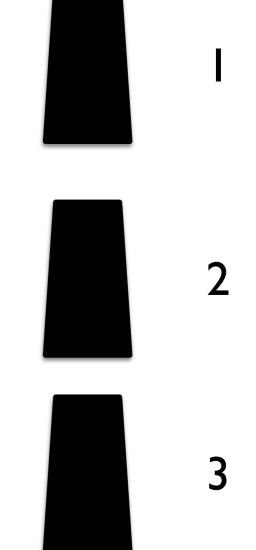


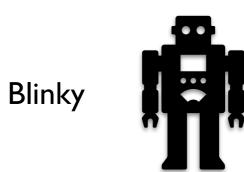


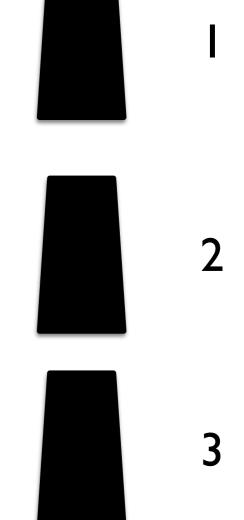




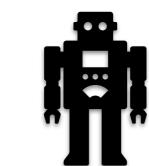








Loc(ball,1)



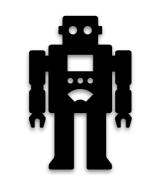
Blinky

3

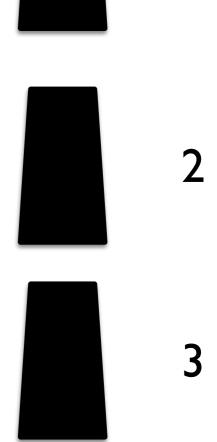
2

Loc(ball,1)

(Loc ball 1)

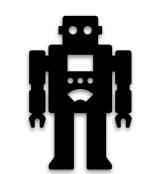


Blinky

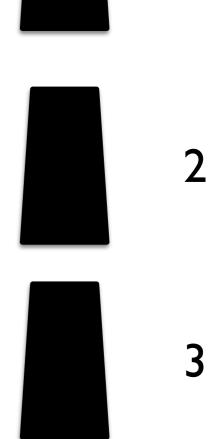


FALSE Loc(ball,1)

(Loc ball 1)

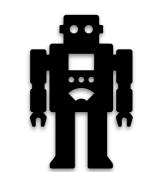


Blinky

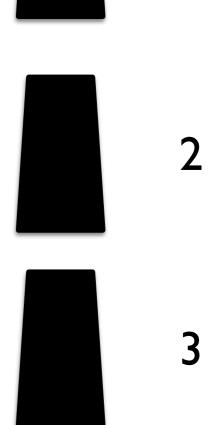


FALSE Loc(ball,1)

(Loc ball 1)

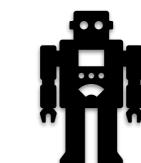


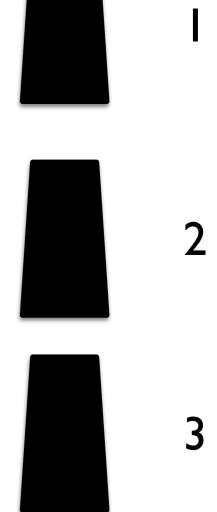
Blinky



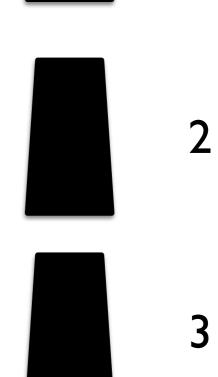
FALSE

(Loc ball 1)

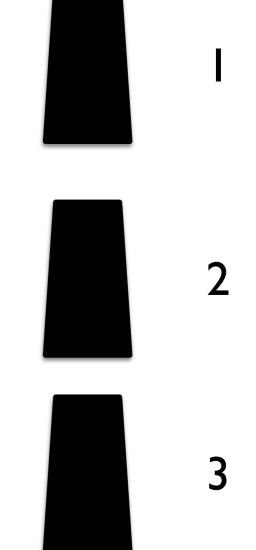


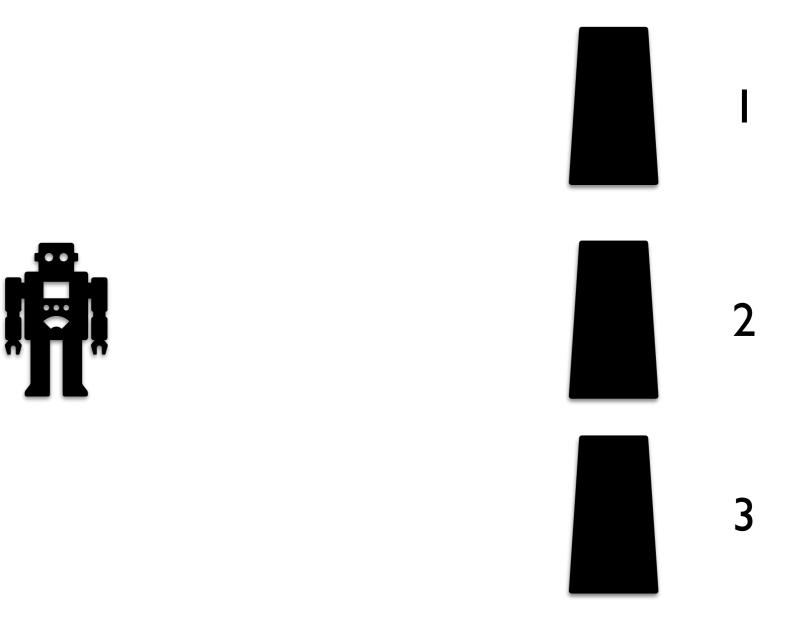


(Loc ball 1)

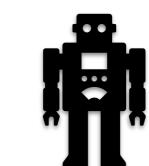


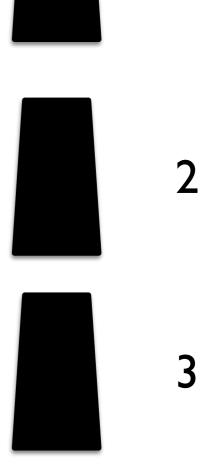






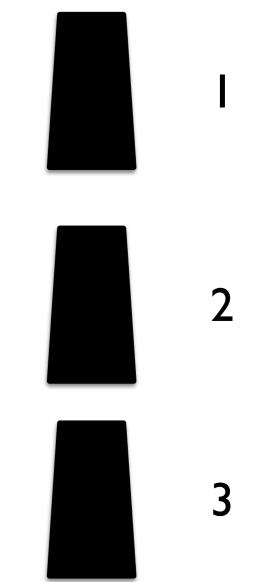
 $Loc(ball,1) \lor Loc(ball,3)$

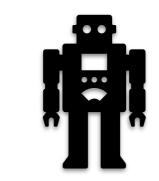




 $Loc(ball,1) \lor Loc(ball,3)$

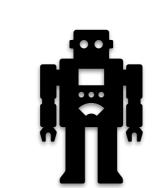
(or (Loc ball 1) (Loc ball 3))

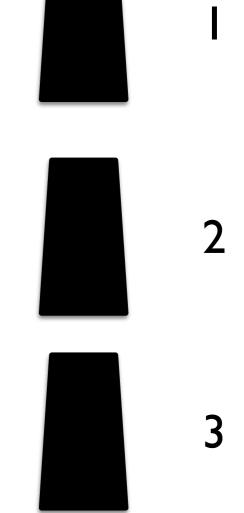




FALSE Loc(ball,1) \lor Loc(ball,3)

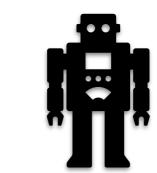
(or (Loc ball 1) (Loc ball 3))

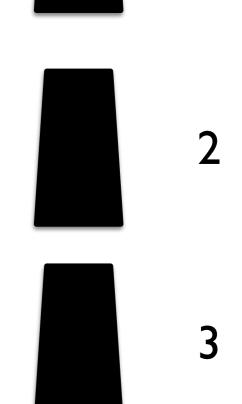




FALSE Loc(ball,1) \lor Loc(ball,3)

(or (Loc ball 1) (Loc ball 3))

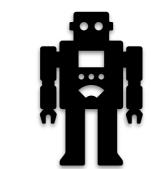


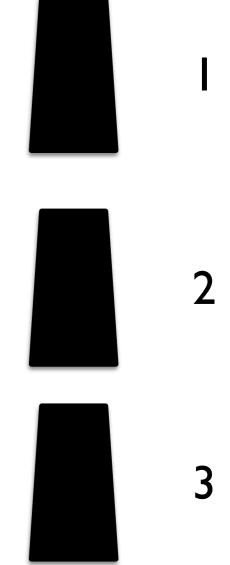


FALSE

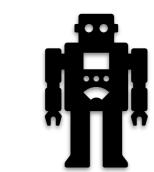
Blinky

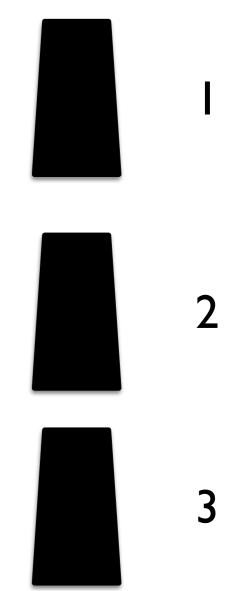
(or (Loc ball 1) (Loc ball 3))



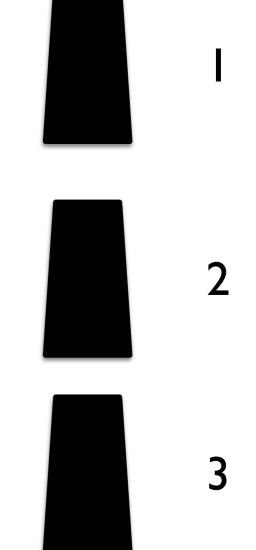


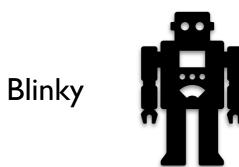
FALSE

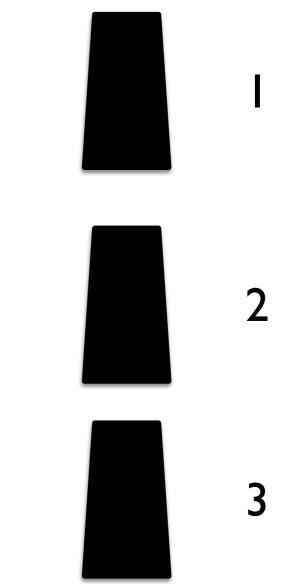




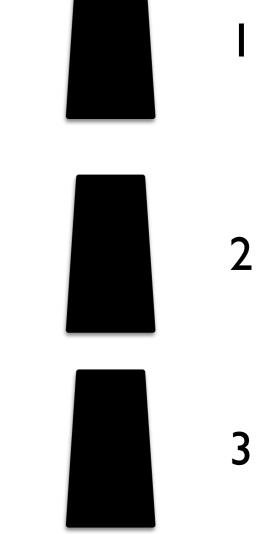






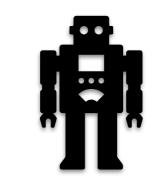


B(blinky, Loc(ball, 1))

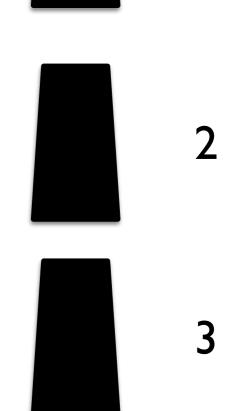


B(blinky, Loc(ball, 1))

(Believes! t blinky (Loc ball 1))

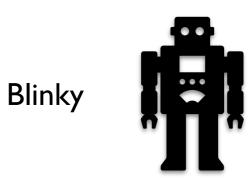


Blinky

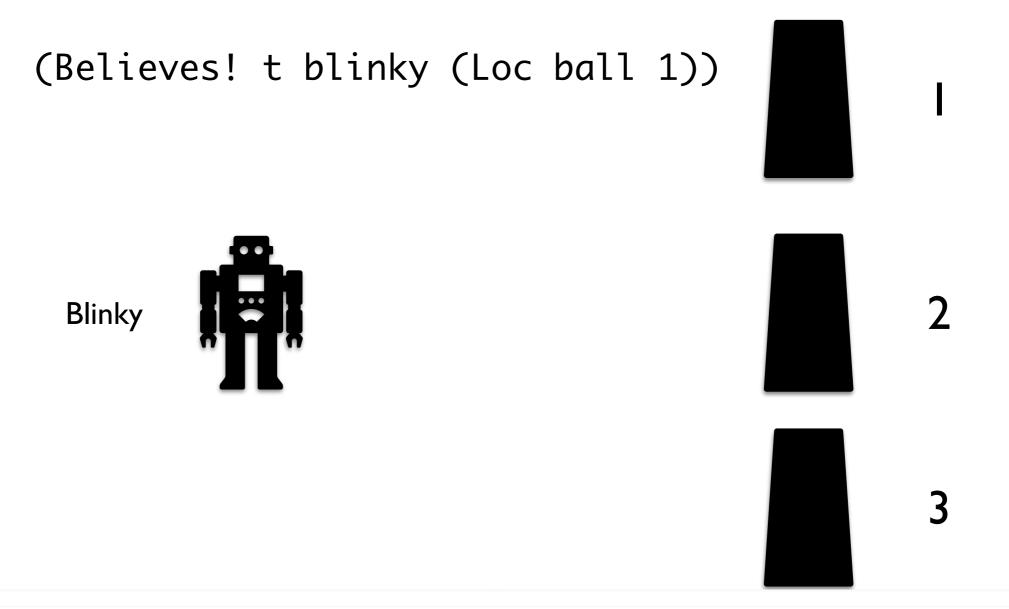


B(blinky, Loc(ball,1))

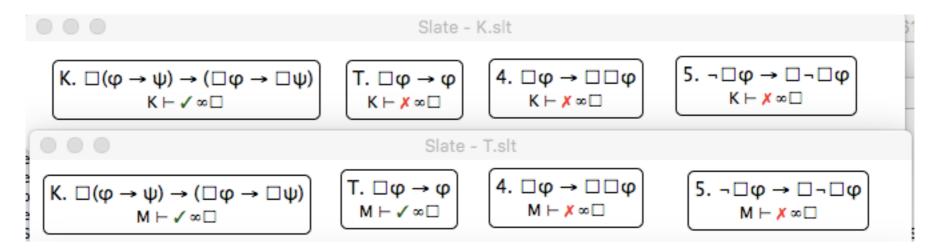
(Believes! t blinky (Loc ball 1))

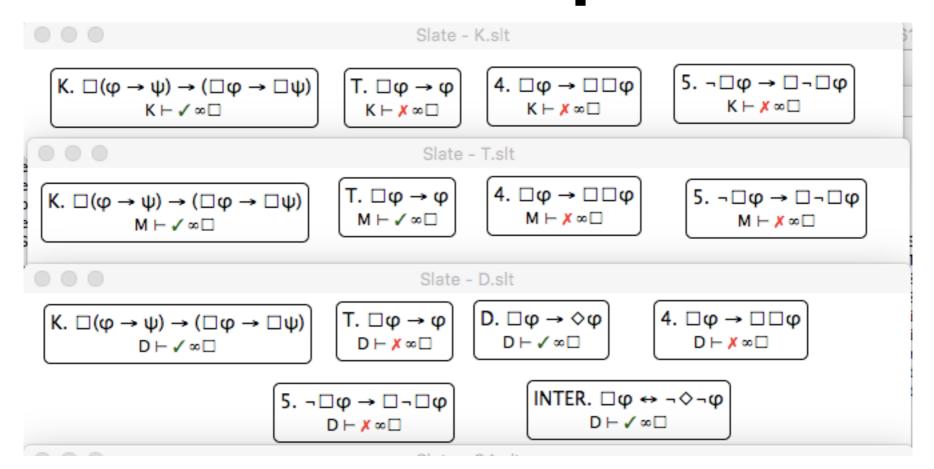


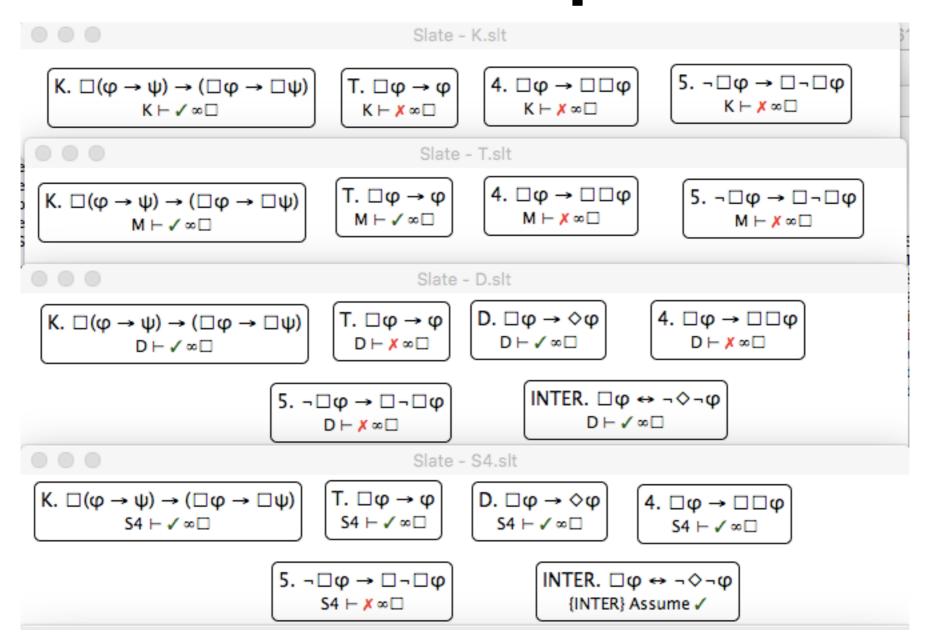


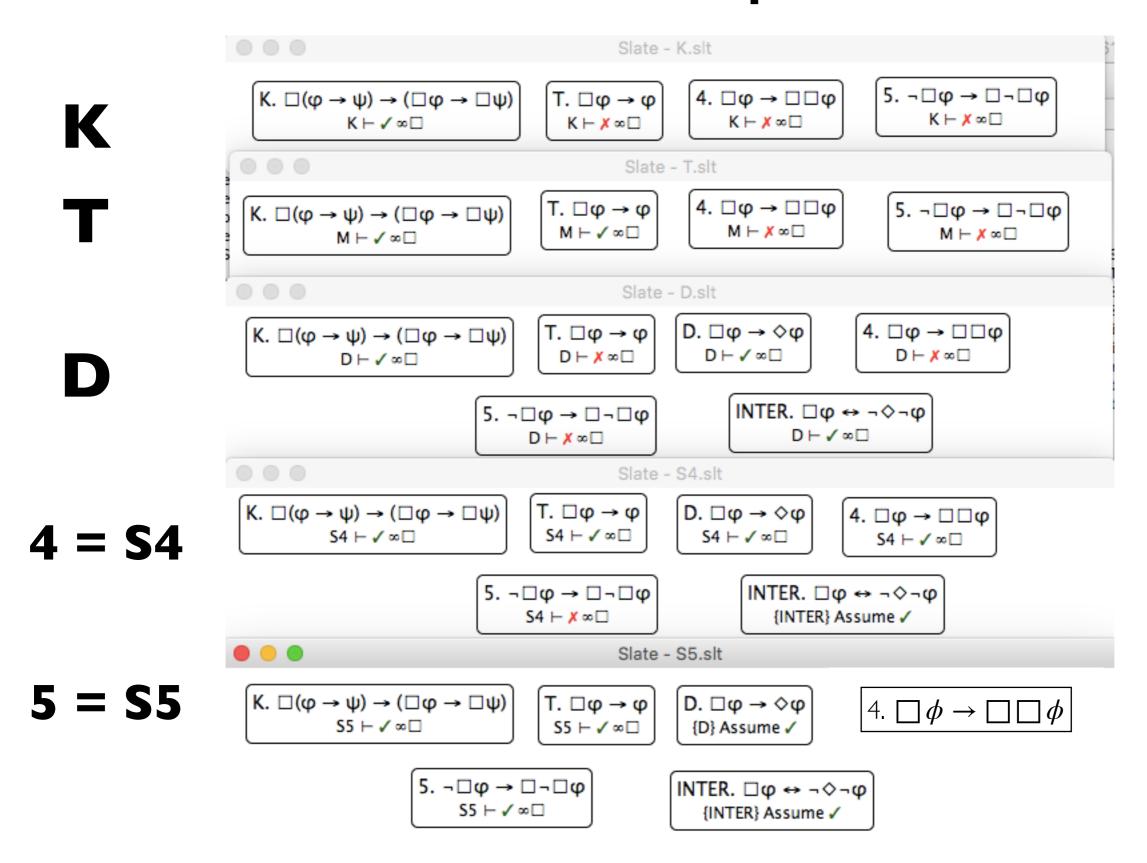


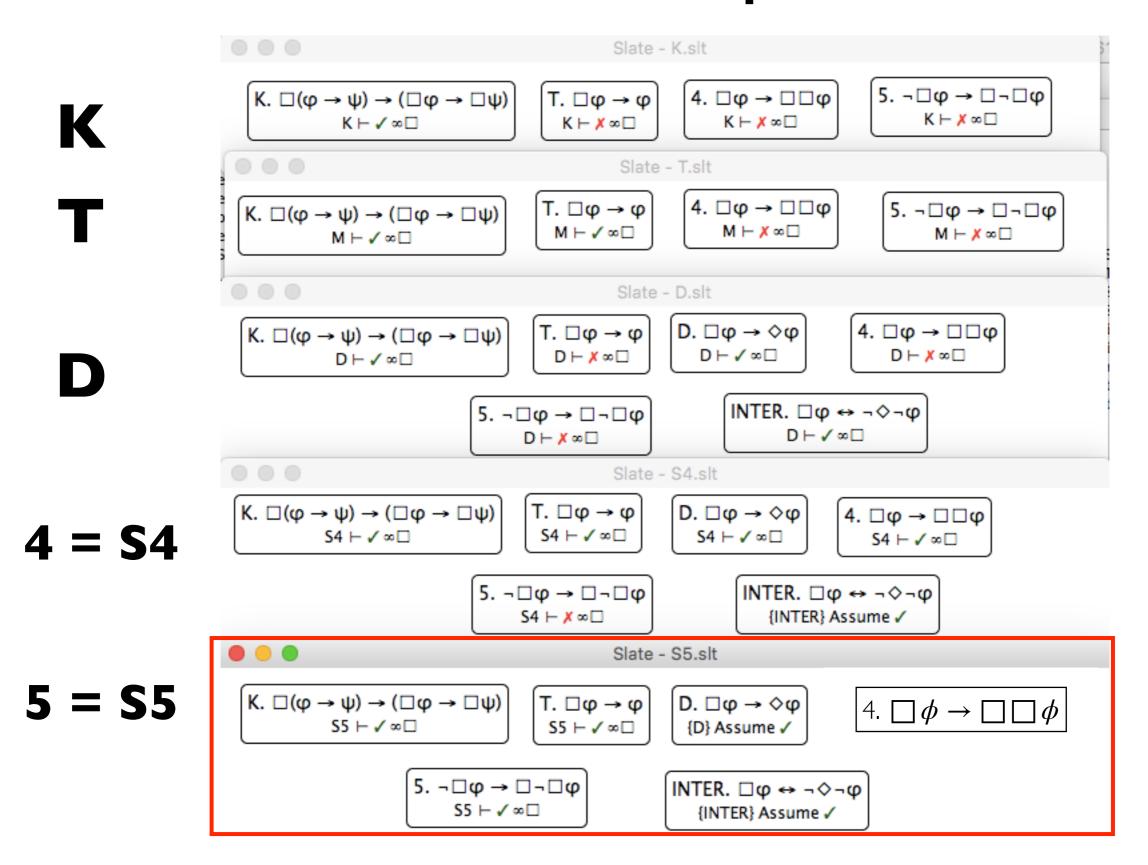
In extensional logics, what is denoted is conflated with meaning (the latter being naïvely compositional), and intensional attitudes like *believes*, *knows*, *hopes*, *fears*, etc cannot be represented and reasoned over smoothly (e.g. without fear of inconsistency rising up).







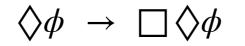


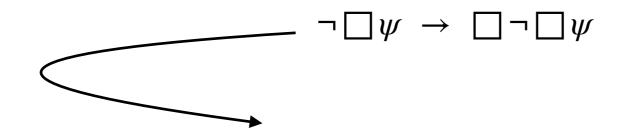


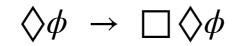
$$\Diamond \phi \ \rightarrow \ \Box \Diamond \phi$$

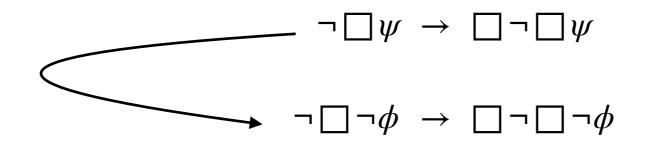
$$\Diamond \phi \rightarrow \Box \Diamond \phi$$

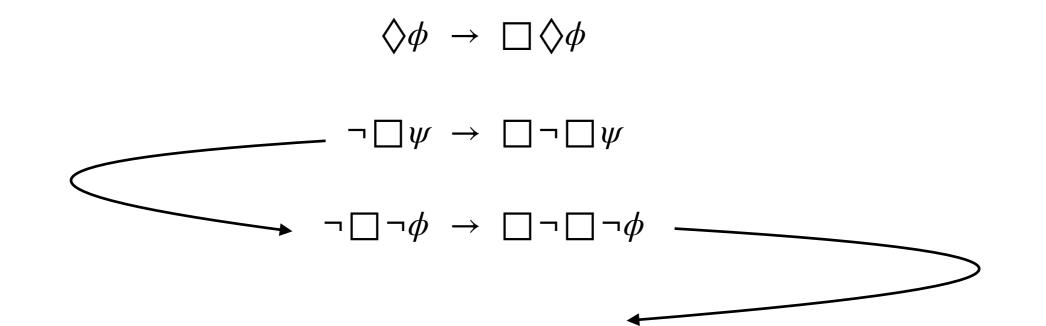
$$\neg \Box \psi \rightarrow \Box \neg \Box \psi$$

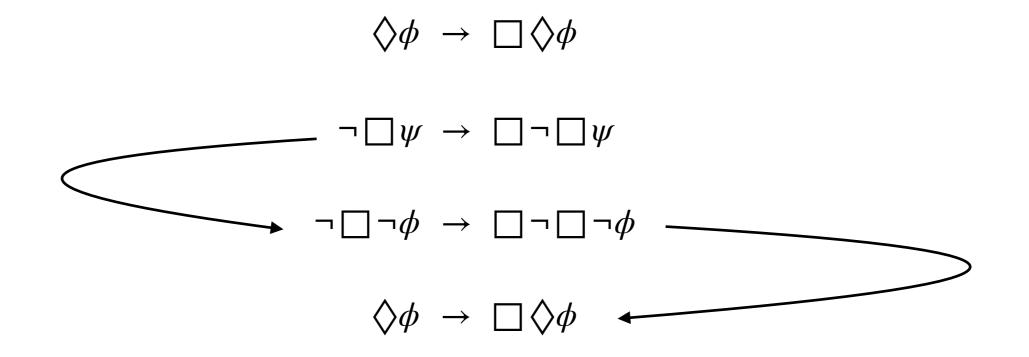




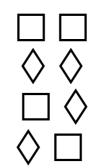




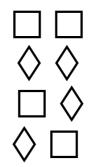




The Four Possible Pairs



The Four Possible Pairs



The Four Reduction Principles

 $\Box \phi \leftrightarrow \Box \Box \phi$

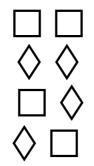
 $\Diamond\phi\leftrightarrow\Diamond\Diamond\phi$

 $\Box \phi \leftrightarrow \Diamond \Box \phi$

 $\Diamond\phi\leftrightarrow\Box\Diamond\phi$

(where $\phi \in \mathscr{L}_{pc}$)

The Four Possible Pairs



The Four Reduction Principles

 $\Box \phi \leftrightarrow \Box \Box \phi$

 $\Diamond \phi \leftrightarrow \Diamond \Diamond \phi$

 $\Box \phi \leftrightarrow \Diamond \Box \phi$

 $\Diamond \phi \leftrightarrow \Box \Diamond \phi$

(where $\phi \in \mathscr{L}_{pc}$)

(verify in HS®)

Quantificational $S5_1$...

Quantificational $S5_{1}$...

Quantificational S51...

Easy peasy: Marry **PS5** + $\mathscr{L}_1!$

Quantificational S51...

Easy peasy: Marry **PS5** + $\mathscr{L}_1!$

Theorem: $\forall x \diamondsuit R(x) \rightarrow \forall x \Box \diamondsuit R(x)$

Quantificational $S5_{1}$...

Easy peasy: Marry **PS5** + $\mathscr{L}_1!$

Theorem: $\forall x \diamondsuit R(x) \rightarrow \forall x \Box \diamondsuit R(x)$

Theorem: $\Diamond \exists x R(x) \leftrightarrow \exists x \Diamond R(x)$

Quantificational $S5_1$...

Easy peasy: Marry **PS5** + $\mathscr{L}_1!$

Theorem: $\forall x \diamondsuit R(x) \rightarrow \forall x \Box \diamondsuit R(x)$

Theorem: $\Diamond \exists x R(x) \leftrightarrow \exists x \Diamond R(x)$

Quantificational $S5_{1}$...

Easy peasy: Marry **PS5** + $\mathscr{L}_1!$

Theorem: $\forall x \diamondsuit R(x) \rightarrow \forall x \Box \diamondsuit R(x)$



Theorem: $\Diamond \exists x R(x) \leftrightarrow \exists x \Diamond R(x)$

Barcan Formula: $\vdash_{QS5_1} \Diamond \exists x \phi(x) \rightarrow \exists x \Diamond \phi(x)$

Barcan Formula: $\vdash_{QS5_1} \Diamond \exists x \phi(x) \rightarrow \exists x \Diamond \phi(x)$

Converse Barcan Formula: $\vdash_{QS5_1} \exists x \Diamond \phi(x) \rightarrow \Diamond \exists x \phi(x)$

Barcan Formula: $\vdash_{QS5_1} \Diamond \exists x \phi(x) \rightarrow \exists x \Diamond \phi(x)$

Converse Barcan Formula: $\vdash_{OS5_1} \exists x \Diamond \phi(x) \rightarrow \Diamond \exists x \phi(x)$

