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Logistics …



Status?  Some discussion …
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Q3
Consider a new propositional modal logic:  propositional provability logic, or for short, PPL.  We here 
make use of the familiar “box” and “diamond” we have seen in our propositional modal logics so far, 
which of course are available in HS®.  In PPL we read  as saying that  is provable, and  is 
simply an abbreviation for .  In order to have PPL available to us for exploration in HS®, 
we simply use K, and add to our workspace a formula that expresses this new principle:

(Löb) If it’s provable that (if  is provable, then ), then  is provable.

Let <(Löb)> denote this formula.  Now here are the two tasks for you in Q3:

(i) Can the characteristic axiom of S4 be proved in PPL?  Prove your answer.  (Max one page.)

(ii) It would seem that a more interesting and (given what those in the business of proving things 
do) accurate logic would be quantified provability logic (QPL), since after all, all interesting 
theorems have quantifiers and relation symbols in them.  After you are clear on what QPL 
amounts to formally, answer the following question, and justify your answer with cogent 
argumentation.
Question:  Can an artificial agent can be engineered which productively uses QPL?  Max one page.

□ ϕ ϕ ◊ϕ
¬ □ ¬ϕ

ϕ ϕ ϕ



Return to Return-to-Blinky 
…
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In extensional logics, what is denoted is conflated with meaning (the latter being naïvely 
compositional), and intensional attitudes like believes, knows, hopes, fears, etc cannot be 
represented and reasoned over smoothly (e.g. without fear of inconsistency rising up).
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