Church's Theorem*

Selmer Bringsjord

(wTM slides by Naveen Sundar G)

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intermediate Formal Logic & AI (IFLAI2) 9/13/2021 ver 4

Mechanics ...

Mechanics ...

ChisholmsParadox released.

Mechanics ...

ChisholmsParadox released.

Questions? ...

Turing-decidability/computability

• • •

Turing Machines

Program

current state	current symbol	next state	next symbol	direction

Even Number Function

• f(n) = 1 if n is even; else f(n) = 0

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	I	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	1	2	blank	Left
2	blank	stop	_	Same
l	1	-	I	Right
l	0		0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4	I	3	I	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop		Same
I	_		_	Right
I	0	1	0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4	I	3		Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	_	Same
I	I		I	Right
I	0		0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4		3		Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	1	Same
I	I	I	I	Right
I	0	I	0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4		3		Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	I	Same
I	1	ı	1	Right
I	0		0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4		3		Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	_	Same
I	I	I		Right
I	0	I	0	Right
	blank	4	blank	Left
4	0	2	0	Same
4	I	3	I	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	_	Same
I		I		Right
I	0	I	0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4		3		Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	I	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	_	Same
	I		I	Right
	0		0	Right
	blank	4	blank	Left
4	0	2	0	Same
4		3	I	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop		Same
1		Ι		Right
1	0	I	0	Right
	blank	4	blank	Left
4	0	2	0	Same
4	I	3	I	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	_	Same
	I	I	I	Right
	0	I	0	Right
	blank	4	blank	Left
4	0	2	0	Same
4	I	3	I	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	1	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop	_	Same
	I	I		Right
	0	I	0	Right
	blank	4	blank	Left
4	0	2	0	Same
4		3		Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3		3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2		2	blank	Left
2	blank	stop		Same
1		Ι		Right
1	0	I	0	Right
1	blank	4	blank	Left
4	0	2	0	Same
4	I	3	I	Left

current state	current symbol	next state	next symbol	direction
3	0	3	blank	Left
3	I	3	blank	Left
3	blank	stop	0	Same
2	0	2	blank	Left
2	_	2	blank	Left
2	blank	stop		Same
I	Ι	I		Right
I	0	Ι	0	Right
I	blank	4	blank	Left
4	0	2	0	Same
4		3		Left

• Functions that can be computed in this manner are *Turing-computable*.

- Functions that can be computed in this manner are Turing-computable.
- Decision problems (Yes/No problems) that can answered in this manner are *Turing-decidable*.
 (Here, I can be used for Y; 2 for N.)

For more on TMs ...

https://plato.stanford.edu/entries/turing-machine

Theorem: The Halting Problem is Turing-unsolvable.

• • •

We assume an encoding of TMs that permits identification of each with some $m \in \mathbb{Z}^+$, and say that the binary halt function h maps a machine and its input to 1 if that machine halts, and to 2 if it doesn't:

$$\forall m, n \ [h(m, n) = 1 \rightarrow Goes(m, n, halt)]$$

$$h(m,n) = 1$$
 if $m:n \longrightarrow$ halt

$$h(m,n) = 2 \text{ if } m : n \longrightarrow \infty$$

So, the theorem we need can be expressed this way:

$$(\star) \quad \neg \exists m^h \ [m^h \text{ computes } h]$$

where a TM that computes a function f starts with arguments to f on its tape and goes to the value of f on applied to those arguments. Next, let's construct a TM m^c that copies a block of I's (separated by a blank #), and (what BBJ in their Computability & Logic call) a "dithering" TM:

$$m^d: n \longrightarrow \text{ halt if } n > 1; \ m^d: n \longrightarrow \infty \text{ if } n = 1$$

Proof: Suppose for *reductio* that m^{h^*} [this is our witness for the existential quantifier in (\star)] computes h. Then we can make a composite machine m^3 consisting of m_c connected to and feeding m^{h^*} which is in turn connected to and feeding m^d . It's easy to see (use some paper and pencil/stylus and tablet!) that

(1) if
$$h(n, n) = 1$$
, then $m^3 : n \longrightarrow \infty$ and

(2) if
$$h(n, n) = 2$$
, then $m^3 : n \longrightarrow \text{halt}$.

To reach our desired contradiction, we simply ask: What happens when we instantiate n to m^3 in (1) and (2)? (E.g., perhaps the TM m^3 is 5, then we would have h(5,5).) The answer to this question, and its leading directly to just what the doctor ordered, is left to the reader. **QED**

Church's Theorem & its proof ...

Church's Theorem: The *Entscheidungsproblem* is Turing-unsolvable.

Proof-sketch: We need to show that the question $\Phi \vdash \phi$? is not Turing-decidable. (Here we are working within the framework of \mathcal{L}_1 .) To begin, note that competent users of HyperSlate® know that any Turing machine m can be formalized in a HyperSlate® workspace. (Explore! Prove it to yourself in hands-on fashion!) They will also then know that

(†) $\forall m, n \in \mathbb{N} \exists \Phi, \phi \ [\Phi \vdash \phi \leftrightarrow m : n \longrightarrow halt]$

where Φ and ϕ are built in HyperSlate[®].

Now, let's assume for contradiction that theoremhood in first-order logic can be decided by a Turing machine m_t . But this is absurd. Why? Because imagine that someone now comes to us asking whether some arbitrary TM m halts. We can infallibly and algorithmically supply a correct answer, because we can formalize m in line with (\dagger) and then employ m_t to given us the answer. **QED**