On Quantificational Modal Logic (S5-centric)

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Logistics ...

Status? Some discussion ...

```
%% TODO
%% [ ]
documentclass[11pt]{article}
usepackage[utf8]{inputenc}
usepackage{fullpage} %% <= why not use this in your own paper?
usepackage{setspace}
%% Toggle the following on for doublespacing:
%% \doublespacing
%% Some standard package calls by S:
\usepackage{amssymb}
\usepackage[colorlinks]{hyperref}
\usepackage{harvard} %% Selmer's preference for citations/References.
\usepackage{color}
\usepackage{marvosym}
\usepackage{mathrsfs}
\usepackage{verbatim}
\usepackage{eufrak}
begin{document}
title{\textbf{IFLAI2F21 Paper Topics}}
author(Prof Selmer Bringsjord)
\date{\texttt{ver 1115211415NY}}
maketitle
begin{small}
\tableofcontents
\end{small}
\thispagestyle{empty}
\newpage
section{General Orientation}
Vahelisection orientation
```

Recall: Schedule Switcheroo

KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued. In this connection we explore the hierarchy \mathfrak{LM} .

- Nov 8: Hypergraphical Proof and Programming in HyperLog®. We here introduce the availability of writing Clojure functions in the context of proofs in HyperLog®.
- Nov 11: Quantified Modal Logic. We here explore quantified S5, including the the infamous Barcan Formula. HyperSlate (R) is used.
- Nov 15: Killer Robots, **D**, and Beyond in HyperSlate to DCEC. We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates. We review that modal logic **D** is painfully inadequate, but now move to some exploration of a version of DCEC in HyperSlate.
- Nov 18: The Logicist AI-ification of the Doctrines of N Effect to Solve the PAID Problem.
- Nov 22: ZFC. We review and expand our understanding of axiomatic set theory, and of the relative size of infinite sets. ZFC in HyperSlate® is visited and explored. Note: This is the last

Recall: Schedule Switcheroo

KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued. In this connection we explore the hierarchy \mathfrak{LM} .

- Nov 8: Hypergraphical Proof and Programming in HyperLog®. We here introduce the availability of writing Clojure functions in the context of proofs in HyperLog®.
- Nov 11: Quantified Modal Logic. We here explore quantified S5, including the the infamous Barcan Formula. HyperSlate (R) is used.
- Nov 15: Killer Robots, D, and Beyond in $HyperSlate^{\textcircled{R}}$ to \mathcal{DCEC} . We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates. We review that modal logic D is painfully inadequate, but now move to some exploration of a version of \mathcal{DCEC} in HyperSlate R.
- Nov 18: The Logicist AI-ification of the Doctrines of N Effect to Solve the PAID Problem.
- Nov 22: ZFC. We review and expand our understanding of axiomatic set theory, and of the relative size of infinite sets. ZFC in HyperSlate® is visited and explored. Note: This is the last

Recall: Schedule Switcheroo

KU machines. We also discuss whether programming beyond the Turing Limit makes sense and can be pursued. In this connection we explore the hierarchy \mathfrak{LM} .

- Nov 8: Hypergraphical Proof and Programming in HyperLog®. We here introduce the availability of writing Clojure functions in the context of proofs in HyperLog®.
- Nov 11: Quantified Modal Logic. We here explore quantified S5, including the the infamous Barcan Formula. HyperSlate® is used.
- Nov 15: Killer Robots, D, and Beyond in $HyperSlate^{\textcircled{R}}$ to \mathcal{DCEC} . We begin here by stating the "PAID Problem," and then the approach to it from Bringsjord et al. advocates. We review that modal logic D is painfully inadequate, but now move to some exploration of a version of \mathcal{DCEC} in HyperSlate R.
- Nov 18: The Logicist AI-ification of the Doctrines of N Effect to Solve the PAID Problem.
- Nov 22: ZFC. We review and expand our understanding of axiomatic set theory, and of the relative size of infinite sets. ZFC in HyperSlate® is visited and explored. Note: This is the last

Q2?

Return to Return-to-Blinky

• • •

Blinky

Loc(ball,1)

(Loc ball 1)

FALSE

(Loc ball 1)

$Loc(ball,1) \lor Loc(ball,3)$

(or (Loc ball 1) (Loc ball 3))

(or (Loc ball 1) (Loc ball 3))

FALSE Loc(ball,1) \times Loc(ball,3)

(or (Loc ball 1) (Loc ball 3))

2

FALSE

FALSE

Blinky believes that the ball is in the cup at location #1.

Blinky believes that the ball is in the cup at location #1.

B(blinky, Loc(ball, 1))

Blinky believes that the ball is in the cup at location #1.

B(blinky, Loc(ball, 1))

(Believes! t blinky (Loc ball 1))

Blinky

Blinky believes that the ball is in the cup at location #1.

Blinky believes that the ball is in the cup at location #1.

In extensional logics, what is denoted is conflated with meaning (the latter being naïvely compositional), and intensional attitudes like *believes*, *knows*, *hopes*, *fears*, etc cannot be represented and reasoned over smoothly (e.g. without fear of inconsistency rising up).

K

S5 ...

$$\Diamond \phi \rightarrow \Box \Diamond \phi$$

$$\neg \Box \psi \rightarrow \Box \neg \Box \psi$$

The Four Possible Pairs

The Four Possible Pairs

The Four Reduction Principles

$$\Box \phi \leftrightarrow \Box \Box \phi$$

$$\Diamond \phi \leftrightarrow \Diamond \Diamond \phi$$

$$\Box \phi \leftrightarrow \Diamond \Box \phi$$

$$\Diamond \phi \leftrightarrow \Box \Diamond \phi$$

(where $\phi \in \mathcal{L}_{pc}$)

The Four Possible Pairs

The Four Reduction Principles

$$\square \phi \leftrightarrow \square \square \phi$$

$$\Diamond \phi \leftrightarrow \Diamond \Diamond \phi$$

$$\Box \phi \leftrightarrow \Diamond \Box \phi$$

$$\Diamond \phi \leftrightarrow \Box \Diamond \phi$$

(where $\phi \in \mathcal{L}_{pc}$)

(verify in HS®)

Quantificational S5_{1...}

Quantificational S5_{1...}

Quantificational S51...

Easy peasy: Marry **PS5** + $\mathcal{L}_1!$

Quantificational S5_{1...}

Easy peasy: Marry **PS5** + $\mathcal{L}_1!$

Theorem: $\forall x \Diamond R(x) \rightarrow \forall x \square \Diamond R(x)$

Quantificational S51...

Easy peasy: Marry **PS5** + \mathcal{L}_1 !

Theorem: $\forall x \Diamond R(x) \rightarrow \forall x \square \Diamond R(x)$

Theorem: $\Diamond \exists x R(x) \leftrightarrow \exists x \Diamond R(x)$

Quantificational S5_{1...}

Easy peasy: Marry **PS5** + \mathcal{L}_1 !

Theorem: $\forall x \Diamond R(x) \rightarrow \forall x \square \Diamond R(x)$

Theorem: $\Diamond \exists x R(x) \leftrightarrow \exists x \Diamond R(x)$

•

ullet

lacktriangle

Quantificational S5_{1...}

Easy peasy: Marry **PS5** + $\mathcal{L}_1!$

Theorem: $\forall x \Diamond R(x) \rightarrow \forall x \square \Diamond R(x)$

(verify in HS®)

Theorem: $\Diamond \exists x R(x) \leftrightarrow \exists x \Diamond R(x)$

•

lacktriangle

lacktriangle

Barcan Formula: $\vdash_{QS5_1} \Diamond \exists x \phi(x) \rightarrow \exists x \Diamond \phi(x)$

Barcan Formula: $\vdash_{QS5_1} \Diamond \exists x \phi(x) \rightarrow \exists x \Diamond \phi(x)$

Converse Barcan Formula: $\vdash_{QS5_1} \exists x \Diamond \phi(x) \rightarrow \Diamond \exists x \phi(x)$

Barcan Formula: $\vdash_{QS5_1} \Diamond \exists x \phi(x) \rightarrow \exists x \Diamond \phi(x)$

Converse Barcan Formula: $\vdash_{QS5_1} \exists x \Diamond \phi(x) \rightarrow \Diamond \exists x \phi(x)$

Four S5 Bins for Everything ...

