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%% TODO

6% [ ]
documentclass[11pt]{article}
usepackage[utf8{inputenc}

usepackage{fullpage} %% <= why not use this in your own paper?
usepackage{setspace}

%% Toggle the following on for doublespacing:

%% \doublespacing

%% Some standard package calls by S:
\usepackage{amssymb}
\usepackage[colorlinksl{hyperref}
\usepackage{harvard} %% Selmer's preference for citations/References.
\usepackage{color}
\usepackage{marvosym}
\usepackage{mathrsfs}
\usepackage{verbatim}
\usepackage{eufrak}
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Recall: Schedule Switcheroo

KU machines. We also discuss whether pro-
gramming beyond the Turing Limit makes sense
and can be pursued. In this connection we ex-
plore the hierarchy £9.

e Nov 8: Hypergraphical Proof and Program-

ming in HyperLog@. We here introduce the
availability of writing Clojure functions in the

context of proofs in HyperLog®.

e Nov 11: Quantified Modal Logic. We here ex-
plore quantified S5, including the the infamous

Barcan Formula. HyperSlate® is used.

e Nov 15: Killer Robots, D, and Beyond in

HyperSlate@ to DCEC. We begin here by stat-
ing the “PAID Problem,” and then the ap-
proach to it from Bringsjord et al. advocates.
We review that modal logic D is painfully in-
adequate, but now move to some exploration

of a version of DCEC in HyperSlate®.

e Nov 18: The Logicist Al-ification of the Doc-
trines of N Effect to Solve the PAID Problem.

e Nov 22: ZFC. We review and expand our un-
derstanding of axiomatic set theory, and of the

relative size of infinite sets. ZFC in HyperSlate®
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Blinky believes that the ball is in the cup at location #1.
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Blinky believes that the ball is in the cup at location #1.
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Blinky believes that the ball is in the cup at location #1.
227 B(blinky, Loc(ball,1))

(Believes! t blinky (Loc ball 1))
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In extensional logics, what is denoted is conflated with meaning (the latter being naively
compositional), and intensional attitudes like believes, knows, hopes, fears, etc cannot be
represented and reasoned over smoothly (e.g. without fear of inconsistency rising up).
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Fasy peasy: Marry PS5 + &£/
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Fasy peasy: Marry PS5 + &£/

Theorem: VxQR(x) — Vx[JOR(x)

(verify in HS®)
Theorem: ) IxR(x) < IxQR(x)
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Barcan Formula: ;¢ O 3x¢(x) — Ixdep(x)

Converse Barcan Formula: s EIx(}qb(x) — QEqub(x)
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Abstract I articulate a novel modal argument for P=]

Keywords P=NP - Modal logic - Digital physics

The Clay Mathematics Institute offers a $1 million prize for a solution to the
P=7NP problem." I look forward to receiving my award—but concede that the
expected format of a solution is an object-level proof, not a meta-level argument
like what I provide. On the other hand, certainly the winner needn’t provide a
constructive proof that P=NP.” Despite Godel’s recently discovered position on the

! See http://www.claymath.org/millennium. There are six other “millennium” problems; each of these is
also associated with a $1M prize.

2 As many readers know, the history of the problem is littered with failed attempts to provide non-
constructive substantiation of the received view that P# NP.

I'm greatly indebted to Michael Zenzen for many valuable discussions about the P=?NP problem and
physics (simpliciter and digital), and to Jim Fahey for discussions about such physics and mixed-mode
dual-diamond operators in modal logic. The presentation of the core arguments herein to editions of
Bringsjord’s graduate seminar, Logic & Artificial Intelligence, and his guest lectures on P=?NP in
Formal Foundations of Cognitive Science graduate seminars, sparked a number of helpful objections and
suggestions, for which I'm grateful. I'm indebted as well to two anonymous referees for trenchant

Though the two herein (the second of which seems to establish P=NP) are for
weal or woe Bringsjord’s, Joshua Taylor’s astute objections catalyzed much thought and crucial
refinements.

B4 Selmer Bringsjord
Selmer Bringsjord @ gmail.com;
http://www.rpi.edu/ ~ brings

Department of Cognitive Science, Rensselaer Al and Reasoning (RAIR) Lab, Rensselaer
Polytechnic Institute (RPI), Troy, NY 12180, USA

% Department of Computer Science, Rensselaer Al and Reasoning (RAIR) Lab, Rensselaer
Polytechnic Institute (RPI), Troy, NY 12180, USA

@ Springer




Four S5 Bins for Everything ...






