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Turing-decidability/computability



Turing Machines
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® f(n)=1ifniseven;elsef(n)= 0
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® Functions that can be computed in this manner
are luring-computable.



® Functions that can be computed in this manner
are luring-computable.

® Decision problems (Yes/No problems) that can
answered in this manner are Turing-decidable.
(Here, | can be used for Y; 2 for N.)



For more on [ Ms ...

https://plato.stanford.edu/entries/turing-machine



https://plato.stanford.edu/entries/turing-machine

Theorem: [he Halting
Problem is Turing-unsolvable.



We assume an encoding of T Ms that permits identification
of each with some m € Z™, and say that the binary halt
function A maps a machine and its input to | if that
machine halts, and to 2 If it doesn't:
Vm,n [Goes(m,n,halt) — h(m,n) = 1]
him,n) =1ifm:n— halt
him,n)=2ifm:n— o

50, the theorem we need can be expressed this way:
(%) —3Im" [m” computes /]

where a TM that computes a function [ starts with arguments
to [ on Its tape and goes to the value of { applied to those
argsuments. Next, let's construct a TM m* that copies a block
of |'s (separated by a blank #), and (what BBJ in their
Computability & Logic call) a “dithering” TM:

d

mé:n— hattifn>1; m¢

n—ooifn=1



Proof: Suppose for reductio that m™ [this is our witness for the
existential quantifier in ( % )] computes A. Then we can make a
composite machine m> consisting of m¢ connected to and feeding
m'™ which is in turn connected to and feeding m. It's easy to see
(use some paper and pencil/stylus and tablet!) that

(1) ifh(n,n) =1, thenm? : n —
and
(2) ifh(n,n) =2, then m? : n — halt.

To reach our desired contradiction, we simply ask: VWhat happens
when we instantiate 7 to m? in (1) and (2)? (E.g, perhaps the TM m”
is 5, then we would have A(3,5).) The answer to this question, and its
leading directly to just what the doctor ordered, is left to the reader
(but can be easily enough done/verified in HyperSlate®). QED



Proof-by-Cases Verification in HyperSlate®

assume

assume

vn: (h(n, n) =1) v (h(n, n) =2)

from {Def of Function h}

Y

assume

assume

wn: =((h(n, n) =1) A (h(n, n) = 2))

from {Definition of a Function}

FOL K (Oracle) vn: =((h(n, n) =1) A (h(n, n) = 2))

from {Definition of a Function}

assume

Imagined Index for TM m3 EnEERS)

from {Imagined Index for TM m3}

assume

vn: (h(n, n) = 1) = Goes(m3, n, infinity)
from {(1)}

assume

vm,n: Goes(m, n, infinity) = (h(m, n) = 2)
from {D2}

assume

[ B (h(55) =1 v (h(5 5)=2) ’

from {Def of Function h}

assume

from {Case 1}

h(5,5) =1

Node 9. Computed in 17 (ms), size 120 (

h(5, 5) =2

from {Case 2}

Y .
FOL  (Oracle) FOL + (Oracle)
FALSUM From Case 1 K6 Falsum From Case 2 K6
from {(1),D2,Imagined Index for TM m3,Definition of a Function,Case 1} from {(2),D1,Definition of a Function,Imagined Index for m3,Case 2}
Node FALSUM From Case 1. Computed in 34 (ms), size 242 Node Falsum From Case 2. Computed in 22 (ms), size 234
. &
velim

FALSUM From Proof by Cases JK6

from {(1),(2),D1,D2,Definition of a Function,iImagined Index for TM m3,Imagined Index for m3,Def of Function h,Definition of a Function}

Imagined Index for m3 HCE=Ne}

from {Imagined Index for m3}

assume

|

vn: (h(n, n) = 2) = Goes(m3, n, halt)
from {(2)}

assume

vm,n: Goes(m, n, halt) = (h(m, n) =1)
from {D1}




Oracular Verification in HyperSlate®

assume

assume

assume

vn: (h(n, n) = 1) = Goes(m3, n, infinity)
from {(1)}

vn: (h(n, n) = 2) = Goes(m3, n, halt)
from {(2)}

from {D1}

vm,n: Goes(m, n, halt) = (h(m, n) = 1)

assume

vm,n: Goes(m, n, infinity) = (h(m, n) = 2)

from {D2}

assume

vn: =((h(n, n) =1) A (h(n, n) = 2))

from {Definition of a Function}

FOL + (Oracle)

assume

vn: (h(n, n) =1) v (h(n, n) =2)

from {Definition of Function h}

assume

Imagined Index for TM m3 CERS)

from {Imagined Index for TM m3}

FALSUM [K¢

from {D1,D2,Imagined Index for TM m3,Definition of Function h,Definition of a Function,(1),(2)}

Node FALSUM. Computed in 76 (ms), size 387



Church’s Theorem
& its proof ...



Church’s Theorem: [he tntscheidungsproblem s
Turing-unsolvable.

Proof-sketch: \\We need to show that the question
D - ¢? is not Turing-decidable. (Here we are working
within the framework of &£;.) To begin, note that
competent users of HyperSlate® know that any Turing
machine m can be formalized in a HyperSlate®
workspace. (Explore! Prove it to yourself in hands-on
fashion!) They will also then know that

(¥) VmneNID,p[®F+-¢ < m:n— halt]

where ® and ¢ are built in HyperSlate®.



Now, let's assume for contradiction that theoremhood in
first-order logic can be decided by a Turing machine m’
But this Is absurd. Why! Because imagine that someone
now comes to us asking whether some arbitrary TM m
halts. We can infallibly and algorithmically supply a
correct answer, because we can formalize m In line with
(1) and then employ m’ to give us the answer. QED







Church slar Turing!



