Introducing Hyperlog

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAI2

1 1/7/2022
ver 1107221039NY

R Al R

Rensselaer Al and' Reasoning Lab

Logistical topics ...

Still many students missing, & some non-checkmarks
on those who chimed in.

6 Menu @ IFLAI2F22_PAPERTOPICS @b Review 8..% Share @ Submit ‘D History [T] Layout ~ @B Chat

B2t & Ty i Source (legacy) Rich Text Q Z Recompile ~ E £

121 \item \textbf{Topic Area}:

122 \item \textbf{Specific Claim}:
& main72.bib 123
124
125

B main.tex :

IFLAI2F22 Paper Topics & Feedback

126
127 \ditem \textbf{Selmer Bringsjord} \checkmark Prof Selmer Bringsjord
128 v \begin{itemize} . ver 1107221115NY
129 \item \textbf{Email Address in .
130 HyperGraders$”{\mbox{\textregistered}}$}: Contents
\texttt{Selmer.Bringsjordegmail.com} 1 General Orientation 1
131 \item \textbf{Topic Area:} Machine Ethics/Robot Ethics 2 Formatting, Due Dates/Schedule 1
132 \item \textbf{Specific Claim:} It is morally obligatory that 1it's 3 The Required Structure of the Paper 1
133 legally forbidden to violently mistreat robots having sustained 4 The List For You to (Carefully!) Add Yourself To, F22 2
. ; 134 high levels of \textit{cognitive consciousness} (i.e.\ high 5 Sample from Last Offering of IFLAI2 (F21) ¢
v File outline 135 levels of Λ) as defined by \citeasnoun{lambda_in_jaic}. K References T
General Orientation 136 \item \textbf{Feedback}:
Formatting, Due Dates/S... L \end{itemize}
The Required Structure ... 1;2
The List For You to (Care... 140 \item \textbf{Noam Benson-Tilsen} \checkmark
Sample from Last Offeri... 141y \begin{itemize}
142 \item \textbf{Email Address 1in
143 HyperGraders” {\mbox{\textregistered}}$}: \texttt{hensonerpi.edu}
144 \item \textbf{Topic Area}: God's Existence from Artificial/natural
Intelligence
145 \item \textbf{Specific Claim}: The proof presented in class is a
146 reframed '“God of the gaps" argument, which infers God's
147 existence from a lack of factual understanding that is presented
148 as logical contradiction.
149 \item \textbf{Feedback from Selmer}:

150 \end{itemize}

DCEC in HyperSlate® ...

Inference Schemata

K(a7tlyr)a F|_¢a 5] StZ B(aatlar)a F|_¢7 4] StZ

K(a,12,0) [Re] B(a,12,0) [Rs]

C(t,P(a,t,0) — K(a,t,0)) [R:] C(t,K(a,t,0) = B(a,1,0)) (%]

Ct,0)t<t...t<t, R] K(a,t,9)
K(al,tl,...K(an,tmq))"') ’ ¢

[R4]

[Rs]
[Re]

C(t,K(a,11,01 — ¢2)) = K(a,12,01) — K(a,13,2)

C(z,B(a,11,01 — ¢2)) — B(a,12,¢1) — B(a,13,42)
[R7]

C(t,C(t1,01 — ¢2)) = C(t2,01) = C(t3,62)

C(t,Vx. 6 — 0[x—1]) [Rs] C(t,01 < 02 = =02 — —01) 1%

[R10]

Ct,[01N...ANOy = 0] = [0 = ... > by = V))
S(s,h,t,0) I(a,t, happens(action(a*,a),t'))
[R12] —— [R13]
B(h,t,B(s,t,0)) P(a,t,happens(action(a*,a.),t))
B(a,t,¢) B(a,t,0(a,t,9,x)) O(a,t,0,X)

K(a,t,1(a,t,%))

[R14]

DCEC (supported fragment)

First-order (Propositional) Schema
* Assume
* Not Elim, Not Intro
* And Elim,And Intro
* Or Elim, Or Intro
e If Elim, If Intro
o [ff Elim, Iff Intro
* Forall Elim, Forall Intro
* Exists Elim, Exists Intro
* Higher Order Forall Elim, Higher Order Forall Intro
* Higher Order Exists Elim, Higher Order Exists Intro
* Eq Elim, Eq Intro
* Pc Oracle, Fol Oracle

Modal Schema
e R|,R2 R3, Ry,
o Rk, Rba
e Ris

Inference Schemata Moda

K(a,tl,r), I'-e, 1 <t B(a,tl,I‘), I'o, t1 <t
K Rg]

K(a,t2,¢) B(a>t2a¢)

C(1,P(a,t,0) — K(a,t,0)) Ri] C(1,K(a,1,0) — B(a,1,0)) R

Ct,0)t<t...t<t, K(a,t,0)

mehmxwm%@“)[&] n R4

[Rs]

[R¢]

C(taK(a7t1>¢1 — ¢2)) — K(a7t27¢1) — K(a1t3a¢2)

C(taB(a7t17¢1 — ¢2)) — B(a7t2a¢1) — B(a,t3,¢2)
[R7]

C(t,C(t1,01 — ¢2)) = C(22,61) — C(t3,02)

B Cht o n ko)

[R10]

C(t,Vx. 0 — ¢[x—1])

Cit,[01N...NOp = 0] = [01 = ... 2> b, — V])
S(s,h,t,0) I(a,t,happens(action(a*,),t"))
[R12] —— [R13]
B(h,t,B(s,t,0)) P(a,t, happens(action(a*,a),t))
B(a7t7 q)) B(a7t70(a7t’¢)X)) O(a7t7 ¢7X)

K(a,t,I(a,t,y))

[R14]

Delivered on promissory
note re building
hierarchies via formal
logic ... questions?

Re computing over R?!

VVhat about ...
computing over

[g

VVhat about ...
computing over

VVhat about ...
computing over R?!

Resource |

Available online at www.sciencedirect.com

ScienceDirect Theoretical

Computer Science

'1
N
-

e IS LEG
ELS ER Theoretical Computer Science 374 (2007) 277-290
www.elsevier.com/locate/tcs
A new conceptual framework for analog computation
Jerzy Mycka?, José Félix Costa®*
a Institute of Mathematics, University of Maria Curie-Sktodowska, Lublin, Poland
b Department of Mathematics, 1.S.T., Universidade Técnica de Lisboa, Lisboa, Portugal
Received 3 February 2005; received in revised form 26 December 2006; accepted 15 January 2007
Communicated by F. Cucker

Abstract

In this paper we show how to explore the classical theory of computability using the tools of Analysis: A differential scheme
is substituted for the classical recurrence scheme and a limit operator is substituted for the classical minimization. We show that
most relevant problems of computability over the non-negative integers can be dealt with over the reals: elementary functions are
computable, Turing machines can be simulated, the hierarchy of non-computable functions can be represented (the classical halting
problem being solvable at some level). The most typical concepts in Analysis become natural in this framework. The most relevant
question is posed: Can we solve open problems of classical computability and computational complexity using, as Popper says, the
toolbox of Analysis?
© 2007 Elsevier B.V. All rights reserved.

Keywords: Recursive function theory over the reals; Analog computation; Dynamical systems; Dynamical systems capable of universal computation

VVhat about ...
computing over R?!

arXiv.org > math > arXiv:math/9808093 search

Help | Advanced Search

Mathematics > Logic

Download:
[Submitted on 21 Aug 1998] e PDF
Infinite Time Turing Machines * PostScript
e Other formats
Joel David Hamkins, Andy Lewis (license)
Current browse context:
We extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and math
decidability on the reals. The resulting computability theory leads to a notion of computation on the reals and concepts of decidability and semi-decidability <prev | next>
Resou rce 2 for sets of reals as well as individual reals. Every PiA1_1 set, for example, is decidable by such machines, and the semi-decidable sets form a portion of the new | recent | 9808
DeltaAl_2 sets. Our oracle concept leads to a notion of relative computability for reals and sets of reals and a rich degree structure, stratified by two natural References & Citations
jump operators. o NASA ADS

e Google Scholar

Comments: 57 pages, 4 figures, to appear in the Journal of Symbolic Logic e Semantic Scholar

Subjects: Logic (math.LO) 5 blog links whatis wisy
MSC classes: 03D30; 03D60 Export Bibtex Citation
Cite as: arXiv:imath/9808093 [math.LO]

(or arXiv:math/9808093v1 [math.LO] for this version) Bookmark

) o
Submission history FRVER
From: Joel David Hamkins [view email]

[v1] Fri, 21 Aug 1998 02:52:43 UTC (148 KB)

VVhat about ...
computing over R?!

.org > math > arXiv:math/9808093 All fie

Help | Advanced Search

thematics > Logic

Dow
mitted on 21 Aug 1998] e PDF
finite Time Turing Machines * Post

e Othe
| David Hamkins, Andy Lewis (license)

Current
Ve extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and math
lecidability on the reals. The resulting computability theory leads to a notion of computation on the reals and concepts of decidability and semi-decidability < prev
or sets of reals as well as individual reals. Every PiAl_1 set, for example, is decidable by such machines, and the semi-decidable sets form a portion of the new | re:
JeltaArl_2 sets. Our oracle concept leads to a notion of relative computability for reals and sets of reals and a rich degree structure, stratified by two natural Refere
ump operators. e NASA

e Goog
iments: 57 pages, 4 figures, to appear in the Journal of Symbolic Logic * Sema
ects: Logic (math.LO) 5 blog
classes: 03D30; 03D60 Export
as: arXiv:math/9808093 [math.LO]

(or arXiv:imath/9808093v1 [math.LO] for this version) Bookm

FRE

)mission history

n: Joel David Hamkins [view email]
Fri, 21 Aug 1998 02:52:43 UTC (148 KB)

Introducing HyperLog
S ...

Hyperlog:

Historico-logico-programming Landscape

Schdenfinkel simple type theory

i\
- 47

1893

s
-3

Church

Combinatory Logic| |A-calculus

Logic Theorist

(birth of modern logicist Al)

\
s
v ;%
First “logic Liebniiz
programs’ 300 BC Dies 1716

A ML
t
h Scheme CL

Lisp €l Lisp Family
N Clojure
d

Prolog HyperlLog
Fortran
Java

Smalltalk

First “logic
programs’ 300 BC

Liebniiz
Dies | 716

Frege
1893

Hyperlog:
Historico-logico-programming Landscape

Schoenfinkel
1893

o
—3

simple type theory

f
i* :

Church

Combinatory Logic

A-calculus

Lisp

Fortran

ML

Scheme

CL

Lisp Family

O S5 O O+ >

Clojure

Smalltalk

HyperlLog

Java

First “logic
programs’ 300 BC

Liebniiz
Dies | 716

Frege
1893

Hyperlog:
Historico-logico-programming Landscape

Schoenfinkel
1893

o
—3

simple type theory

f
i* :

Church

Combinatory Logic

A-calculus

Lisp

Fortran

ML

Scheme

CL

Lisp Family

O S5 O O+ >

Clojure

Smalltalk

HyperlLog

Java

First “logic
programs’ 300 BC

Liebniiz
Dies | 716

Frege
1893

Hyperlog:
Historico-logico-programming Landscape

Schoenfinkel
1893

o
—3

simple type theory

f
i* :

Church

Combinatory Logic

A-calculus

Lisp

Fortran

ML

Scheme

CL

Lisp Family

O S5 O O+ >

Clojure

Smalltalk

HyperlLog

Java

First “logic
programs’ 300 BC

Liebniiz
Dies | 716

Frege
1893

Hyperlog:
Historico-logico-programming Landscape

Schoenfinkel
1893

o
—3

simple type theory

f
ix :

Church

Combinatory Logic

A-calculus

Lisp

Fortran

A ML
t
h Scheme CL
€l Lisp Family
N Clojure
d
HyperlLog
4
'
'
I
| 4
Java

Smalltalk

Hyperlog:
Historico-logico-programming Landscape

Schoenfinkel
1893

o
—3

simple type theory

f 3
ix ;

Church

Combinatory Logic

A-calculus

Frege

First “logic Liebniiz
1893

programs’ 300 BC Dies 1716

Lisp

Fortran

Scheme

CL

Lisp Family

O S5 O O+ >

Clojure

A-Prolog

HyperlLog

Smalltalk

Thinking as
Computation

Hector J. Levesque
Dept. of Computer Science
University of Toronto

Thinking as Computation © Levesque 2011

Thinkin|

Constants and variables

A Prolog constant must start with a lower case letter, and can then be
followed by any number of letters, underscores, or digits.

A constant may also be a quoted-string: any string of characters
(except a single quote) enclosed within single quotes.

So the following are all legal constants:

sue opp_sex mamboNumber5 ’'Who are you?’

A Prolog variable must start with an upper case letter, and can then be
followed by any number of letters, underscores, or digits.

So the following are all legal variables:

X P1 MyDog The_biggest number Variable_27b

Prolog also has numeric terms, which we will return to later.

Chapter 3: The Prolog Language © Levesque 2011

Thinkin|

Cq

A F
foll

So

A R
foll

So

Prg

Chapter 3: T}

Atomic sentences

The atomic sentences or atoms of Prolog have the following form:
predicate(termy, ..., termy)

where the predicate is a constant and the terms are either constants or
variables.

Note the punctuation:
e immediately after the predicate, there must be a left parenthesis;

e between each term, there must be a comma;

e immediately after the last term, there must be a right parenthesis.

The number of terms k is called the arity of the predicate.
If K = 0, the parentheses can be left out.

Chapter 3: The Prolog Language © Levesque 2011

Thinkin|

Cq

A F
foll

So

A R
foll

So

Prg

Chapter 3: T}

Ato

The ¢

wher
varia

Note

The 1
If k =

Chapter 3: The P

mir cantancrac

Conditional sentences

The conditional sentences of Prolog have the following form:
head — boaqy,, ..., body,
where the head and each element of the body is an atom.

Note the punctuation:
e immediately after the head, there must be a colon then hyphen, : -.
e between each element of the body, there must be a comma.

If n = 0, the : - should be omitted.

In other words, an atomic sentence is just a conditional
sentence where the body is empty!

Chapter 3: The Prolog Language © Levesque 2011

Thinkin|

Cq

A F
foll

So

A F
foll

So

Prg

Chapter 3: T}

Ato

The ¢

wher
varia

Note

The 1
If k =

Chapter 3: The P

mir cantanrac
Conditional sentences
The cc Prolog programs
Prolog programs are simply knowledge bases consisting of atomic and
where conditional sentences as before, but with a sightly different notation.
Note t Here is the “family” example as a Prolog program:
family.pl
e im . . .
% This is the Prolog version of the family example
PY be child(john, sue). child(john,sam).
child(jane, sue). child(jane,sam).
child(sue, george). child(sue,gina).
Ifn = (male(john). male(sam). male(george).
female(sue). female(jane). female(june).
In parent(Y,X) :- child(X,Y).
se father(Y,X) :- child(X,Y), male(Y).

Chapter 3: The Prol

opp_sex(X,Y) :- male(X), female(Y).
opp_sex(Y,X) :- male(X), female(Y).
grand_father(X,Z) :- father(X,Y), parent(Y,Z).

Now let’s look at all the pieces in detail . ..

Chapter 3: The Prolog Language © Levesque 2011

Prolog Problems

lab

MIT

massachusetts institute of technology — artificial intelligence laboratory

Certified Computation

Konstantine Arkoudas

Al Memo 2001-007 April 30, 2001

©2001 massachusetts institute of technology, cambridge, ma 02139 usa www.ai.mit.edu

unify, which are by far the two most complicated parts of the system. We only need to
trust our five primitive methods. This becomes evident when we ask Athena to produce the
relevant certificates. For instance, if we ask Athena to produce the certificate for the method
call

(lunify (Cons (== s t) Nil))

we will obtain the exact same proof that was given in page 17, which only uses the primitive
inference rules of our logic.

1.4 Comparison with other approaches

As we mentioned earlier, the idea of using deduction for computational purposes has been
around for a long time. There are several methodologies predating DPLs that can be used for
certified computation. In this section we will compare DPLs to logic programming languages
and to theorem proving systems of the HOL variety.

Comparison with logic programming

The notion of “programming with logic” was a seminal idea, and its introduction and sub-
sequent popularization by Prolog was of great importance in the history of computing. Al-
though logic programming languages can be viewed as platforms for certified computation,
they have little in common with DPLs. DPLs are languages for writing proofs and proof
strategies. By contrast, in logic programming users do not write proofs; they only write
assertions. The inference mechanism that is used for deducing the consequences of those
assertions is fixed and sequestered from the user: linear resolution in the case of Prolog,
some higher-order extension thereof in the case of higher-order logic programming languages
[9, 2], and so on. This rigidity can be unduly constraining. It locks the user into formulating
every problem in terms of the same representation (Horn clauses, or higher-order hereditary
Harrop clauses [10], etc.) and the same inference method, even when those are not the proper
tools to use. For instance, how does one go about proving De Morgan’s laws in Prolog? How
does one derive ~(3 z) ~P(x) from the assumption (Vz) P(x)? Moreover, how does one write
a schema that does this for any given z and P? How about higher-order equational rewriting
or semantic tableaux? Although in principle more or less everything could be simulated in
Prolog, for many purposes such a simulation would be formidably cumbersome.

A related problem is lack of extensibility. Users have no way of extending the underlying
inference mechanism so as to allow the system to prove more facts or different types of facts.

The heart of the issue is how much control the user should have over proof construction.
In logic programming the proof-search algorithm is fixed, and users are discouraged from
tampering with it (e.g., by using impure control operators or clever clause reorderings).
Indeed, strong logic programming advocates maintain that the user should have no control
at all over proof construction. The user should simply enter a set of assertions, sit back, and
let the system deduce the desired consequences. Advocates of weak logic programming allow

Alj

relevant certificates. ror mstance, 1I we ask Athena to produce the certiiicate ror the method
call
('unify (Cons (== s t) Nil))

we will obtain the exact same proof that was given in page 17, which only uses the primitive
inference rules of our logic.

1.4 Comparison with other approaches

As we mentioned earlier, the idea of using deduction for computational purposes has been
around for a long time. There are several methodologies predating DPLs that can be used for
certified computation. In this section we will compare DPLs to logic programming languages
and to theorem proving systems of the HOL variety.

Comparison with logic programming

The notion of “programming with logic” was a seminal idea, and its introduction and sub-
sequent popularization by Prolog was of great importance in the history of computing. Al-
though logic programming languages can be viewed as platforms for certified computation,
they have little in common with DPLs. DPLs are languages for writing proofs and proof
strategies. By contrast, in logic programming users do not write proofs; they only write
assertions. The inference mechanism that is used for deducing the consequences of those
assertions is fixed and sequestered from the user: linear resolution in the case of Prolog,
some higher-order extension thereof in the case of higher-order logic programming languages
9, 2], and so on. This rigidity can be unduly constraining. It locks the user into formulating
every problem in terms of the same representation (Horn clauses, or higher-order hereditary
Harrop clauses [10], etc.) and the same inference method, even when those are not the proper
tools to use. For instance, how does one go about proving De Morgan’s laws in Prolog? How
does one derive (3) ~P(x) from the assumption (V) P(x)? Moreover, how does one write
a schema that does this for any given and P? How about higher-order equational rewriting
or semantic tableaux? Although in principle more or less everything could be simulated in
Prolog, for many purposes such a simulation would be formidably cumbersome.

A related problem is lack of extensibility. Users have no way of extending the underlying
inference mechanism so as to allow the system to prove more facts or different types of facts.

The heart of the issue is how much control the user should have over proof construction.
In logic programming the proof-search algorithm is fixed, and users are discouraged from
tampering with it (e.g., by using impure control operators or clever clause reorderings).
Indeed, strong logic programming advocates maintain that the user should have no control
at all over proof construction. The user should simply enter a set of assertions, sit back, and
let the system deduce the desired consequences. Advocates of weak logic programming allow

K

AII

A-Prolog

relevant certificates. ror mstance, 1I we ask Athena to produce the certiiicate ror the method
call
('unify (Cons (== s t) Nil))

we will obtain the exact same proof that was given in page 17, which only uses the primitive
inference rules of our logic.

1.4 Comparison with other approaches

As we mentioned earlier, the idea of using deduction for computational purposes has been
around for a long time. There are several methodologies predating DPLs that can be used for
certified computation. In this section we will compare DPLs to logic programming languages
and to theorem proving systems of the HOL variety.

Comparison with logic programming

The notion of “programming with logic” was a seminal idea, and its introduction and sub-
sequent popularization by Prolog was of great importance in the history of computing. Al-
though logic programming languages can be viewed as platforms for certified computation,
they have little in common with DPLs. DPLs are languages for writing proofs and proof
strategies. By contrast, in logic programming users do not write proofs; they only write
assertions. The inference mechanism that is used for deducing the consequences of those
assertions is fixed and sequestered from the user: linear resolution in the case of Prolog,
some higher-order extension thereof in the case of higher-order logic programming languages
9, 2], and so on. This rigidity can be unduly constraining. It locks the user into formulating
every problem in terms of the same representation (Horn clauses, or higher-order hereditary
Harrop clauses [10], etc.) and the same inference method, even when those are not the proper
tools to use. For instance, how does one go about proving De Morgan’s laws in Prolog? How
does one derive (3) ~P(x) from the assumption (V) P(x)? Moreover, how does one write
a schema that does this for any given and P? How about higher-order equational rewriting
or semantic tableaux? Although in principle more or less everything could be simulated in
Prolog, for many purposes such a simulation would be formidably cumbersome.

A related problem is lack of extensibility. Users have no way of extending the underlying
inference mechanism so as to allow the system to prove more facts or different types of facts.

The heart of the issue is how much control the user should have over proof construction.
In logic programming the proof-search algorithm is fixed, and users are discouraged from
tampering with it (e.g., by using impure control operators or clever clause reorderings).
Indeed, strong logic programming advocates maintain that the user should have no control
at all over proof construction. The user should simply enter a set of assertions, sit back, and
let the system deduce the desired consequences. Advocates of weak logic programming allow

The Factorial of 8 is Happy!

HyperSlate® = @& HyperLog1 [HYPERLOG]: Saved with €Z¥) symbols.

' assume

factorial(n) » cond((n < 0), 0, (n=1), 1, (n > 1), (n * factorial((n - 1))))
from {FACTORIAL FUNC}

vn: Happy(n)]

from {ALLNUMHAPPY}

| COMPUTE |
FOL + (Oracle) ‘

Happy(40320) ’

40320 = factorial(8)
from {FACTORIAL FUNC}

from {ALLNUMHAPPY}

FOL + (Oracle) ‘

Happy(factorial(8))
from {ALLNUMHAPPY,FACTORIAL FUNC}

The Factorial of 8 is Happy!

HyperSlate® = @& HyperLog1 [HYPERLOG]: Saved with €Z¥) symbols.

‘ assume H

H assume H

factorial(n) » cond((n < 0), 0, (n=1), 1, (n > 1), (n * factorial((n - 1))))
from {FACTORIAL FUNC}

vn: Happy(n)]

from {ALLNUMHAPPY}

.

[compUTE|

\FOL + (Oracle) ‘

40320 = factorial(8)
from {FACTORIAL FUNC}

from {ALLNUMHAPPY}

Happy(40320) ’

H FOL + (Oracle) ‘

Happy(factorial(8))
from {ALLNUMHAPPY,FACTORIAL FUNC}

A New Oracle!

HyperSlate® = @& = —2 Bezier v HLOracularProof [HYPERLOG]: Saved with @ symbols.

COMM ADDITION IR SVAVES Y
{ from {COMM ADDITION}

COMM MULT IRV D Gy,
(from {COMM MULT}
(el ololplol] vxy,z x+(y+2)=(X+Yy) +2Z

from {ASSOC ADDITION} J
assume

PRIV vx,y,z: x*(y*2z)=(x*y)*Z
from {ASSOC MULT}

assume

PRGE) vxy,z: x* (y+2) = (X*y) + (y*2)
from {DISTRIB}

n2func(x,y) » (y * (x * (3 + (x * y))))
from {N2FUNC}

HYPERLOG +

wxy: n2func(x, y) = n2func(y, x)

from {COMM ADDITION,COMM MULT,ASSOC ADDITION,ASSOC MULT,DISTRIB,N2FUNC}

A New Oracle!

HyperSlate® = @& = —2 Bezier v HLOracularProof [HYPERLOG]: Saved with @ symbols.

COMM ADDITION IR SVAVES Y
{ from {COMM ADDITION}

COMM MULT IRV D Gy,
(from {COMM MULT}
(el ololplol] vxy,z x+(y+2)=(X+Yy) +2Z

from {ASSOC ADDITION} J
assume

PRIV vx,y,z: x*(y*2z)=(x*y)*Z
from {ASSOC MULT}

assume

PRGE) vxy,z: x* (y+2) = (X*y) + (y*2)
from {DISTRIB}

n2func(x,y) » (y * (x * (3 + (x * y))))
from {N2FUNC}

HYPERLOG +

wxy: n2func(x, y) = n2func(y, x)

from {COMM ADDITION,COMM MULT,ASSOC ADDITION,ASSOC MULT,DISTRIB,N2FUNC}

Available in Hyperlog .5

"letfn",

"=", “cond",

“and", "or", "not", "not=",

Mgt U=, UM, /", "quot", "rem", "mod",

“inc", “dec", Ymax® , min", "+'", Y=2" U USne', “dec'”,

it Ul G0 Nt Un_ N Ucompare';

“"zero?", "pos?", "neg?", "even?", "odd?",

"number?", "rational?", "integer?", "ratio?", "decimal?", "float?",
"double?", "int?", "nat-int?", "neg-int?", "pos-int?",

"count", "get", "subs", "compare",

"clojure.string/join", "clojure.string/escape", "clojure.string/split",
"clojure.string/split-lines", "clojure.string/replace", "clojure.string/replace-first",
"reverse", "index-of", "last-index-of", "str"

