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Available online at www.sciencedirect.com

ScienceDirect Theoretical

Computer Science
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e IS LEG
ELS ER Theoretical Computer Science 374 (2007) 277-290
www.elsevier.com/locate/tcs
A new conceptual framework for analog computation
Jerzy Mycka?, José Félix Costa®*
a Institute of Mathematics, University of Maria Curie-Sktodowska, Lublin, Poland
b Department of Mathematics, 1.S.T., Universidade Técnica de Lisboa, Lisboa, Portugal
Received 3 February 2005; received in revised form 26 December 2006; accepted 15 January 2007
Communicated by F. Cucker

Abstract

In this paper we show how to explore the classical theory of computability using the tools of Analysis: A differential scheme
is substituted for the classical recurrence scheme and a limit operator is substituted for the classical minimization. We show that
most relevant problems of computability over the non-negative integers can be dealt with over the reals: elementary functions are
computable, Turing machines can be simulated, the hierarchy of non-computable functions can be represented (the classical halting
problem being solvable at some level). The most typical concepts in Analysis become natural in this framework. The most relevant
question is posed: Can we solve open problems of classical computability and computational complexity using, as Popper says, the
toolbox of Analysis?
© 2007 Elsevier B.V. All rights reserved.

Keywords: Recursive function theory over the reals; Analog computation; Dynamical systems; Dynamical systems capable of universal computation
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Constants and variables

A Prolog constant must start with a lower case letter, and can then be
followed by any number of letters, underscores, or digits.

A constant may also be a quoted-string: any string of characters
(except a single quote) enclosed within single quotes.

So the following are all legal constants:

sue opp_sex mamboNumber5 ’'Who are you?’

A Prolog variable must start with an upper case letter, and can then be
followed by any number of letters, underscores, or digits.

So the following are all legal variables:

X P1 MyDog The_biggest number Variable_27b

Prolog also has numeric terms, which we will return to later.

Chapter 3: The Prolog Language © Levesque 2011
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Atomic sentences

The atomic sentences or atoms of Prolog have the following form:
predicate(termy, ..., termy)

where the predicate is a constant and the terms are either constants or
variables.

Note the punctuation:
e immediately after the predicate, there must be a left parenthesis;

e between each term, there must be a comma;

e immediately after the last term, there must be a right parenthesis.

The number of terms k is called the arity of the predicate.
If K = 0, the parentheses can be left out.

Chapter 3: The Prolog Language © Levesque 2011
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Conditional sentences

The conditional sentences of Prolog have the following form:
head — boaqy,, ..., body,
where the head and each element of the body is an atom.

Note the punctuation:
e immediately after the head, there must be a colon then hyphen, : -.
e between each element of the body, there must be a comma.

If n = 0, the : - should be omitted.

In other words, an atomic sentence is just a conditional
sentence where the body is empty!

Chapter 3: The Prolog Language © Levesque 2011
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Conditional sentences
The cc Prolog programs
Prolog programs are simply knowledge bases consisting of atomic and
where conditional sentences as before, but with a sightly different notation.
Note t Here is the “family” example as a Prolog program:
family.pl
e im . . .
% This is the Prolog version of the family example
PY be child(john, sue). child(john,sam).
child(jane, sue). child(jane,sam).
child(sue, george). child(sue,gina).
Ifn = ( male(john). male(sam). male(george).
female(sue). female(jane). female(june).
In parent(Y,X) :- child(X,Y).
se father(Y,X) :- child(X,Y), male(Y).

Chapter 3: The Prol

opp_sex(X,Y) :- male(X), female(Y).
opp_sex(Y,X) :- male(X), female(Y).
grand_father(X,Z) :- father(X,Y), parent(Y,Z).

Now let’s look at all the pieces in detail . ..

Chapter 3: The Prolog Language © Levesque 2011
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unify, which are by far the two most complicated parts of the system. We only need to
trust our five primitive methods. This becomes evident when we ask Athena to produce the
relevant certificates. For instance, if we ask Athena to produce the certificate for the method
call

(lunify (Cons (== s t) Nil))

we will obtain the exact same proof that was given in page 17, which only uses the primitive
inference rules of our logic.

1.4 Comparison with other approaches

As we mentioned earlier, the idea of using deduction for computational purposes has been
around for a long time. There are several methodologies predating DPLs that can be used for
certified computation. In this section we will compare DPLs to logic programming languages
and to theorem proving systems of the HOL variety.

Comparison with logic programming

The notion of “programming with logic” was a seminal idea, and its introduction and sub-
sequent popularization by Prolog was of great importance in the history of computing. Al-
though logic programming languages can be viewed as platforms for certified computation,
they have little in common with DPLs. DPLs are languages for writing proofs and proof
strategies. By contrast, in logic programming users do not write proofs; they only write
assertions. The inference mechanism that is used for deducing the consequences of those
assertions is fixed and sequestered from the user: linear resolution in the case of Prolog,
some higher-order extension thereof in the case of higher-order logic programming languages
[9, 2], and so on. This rigidity can be unduly constraining. It locks the user into formulating
every problem in terms of the same representation (Horn clauses, or higher-order hereditary
Harrop clauses [10], etc.) and the same inference method, even when those are not the proper
tools to use. For instance, how does one go about proving De Morgan’s laws in Prolog? How
does one derive ~(3 z) ~P(x) from the assumption (Vz) P(x)? Moreover, how does one write
a schema that does this for any given z and P? How about higher-order equational rewriting
or semantic tableaux? Although in principle more or less everything could be simulated in
Prolog, for many purposes such a simulation would be formidably cumbersome.

A related problem is lack of extensibility. Users have no way of extending the underlying
inference mechanism so as to allow the system to prove more facts or different types of facts.

The heart of the issue is how much control the user should have over proof construction.
In logic programming the proof-search algorithm is fixed, and users are discouraged from
tampering with it (e.g., by using impure control operators or clever clause reorderings).
Indeed, strong logic programming advocates maintain that the user should have no control
at all over proof construction. The user should simply enter a set of assertions, sit back, and
let the system deduce the desired consequences. Advocates of weak logic programming allow
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