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Instantly Revealed Fatal Problem for DL.:
Representation of Declarative Information —
which logic handles with the ease of driving a

hot knife through a soft stick of butter.
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To represent ¢ we need to tokenize it. How! We need a vocabulary V that is
associated with [Ny], a finite set of numbers {1,2,..., Ny }. What is V itself!
It's a set composed of sub-words, usually. But without loss of mathematical
generality we can just go with words; In that case tokenization gives us

bos_token, My, best, friend’s, floozerbak, makes, a, bejeeker,
that’s, better, than, anyone, .., sinifer, eos_token

which we can then express as a vector composed of the indices; so where
n.€ Z* we have eg

[y, Ry, ..., 1]
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To represent ¢ we need to tokenize it. How! We need a vocabulary V that is
associated with [Ny], a finite set of numbers {1,2,..., Ny }. What is V itself!
It's a set composed of sub-words, usually. But without loss of mathematical
generality we can just go with words; In that case tokenization gives us

bos_token, My, best, friend’s, floozerbak, makes, a, bejeeker,
that’s, better, than, anyone, .., sinifer, eos_token

which we can then express as a vector composed of the indices; so where
n.€ Z* we have eg

[y, Ry, ..., 1]

Are there two bejeekers made by two different agents, and believed by the speaker to
be singularly good, for reasons beyond their having in them either lazerall or sinifer?
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Given This, Do Machine-Learning Machines Learn! No.
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Do Machine-Learning Machines Learn?

Selmer Bringsjord and Naveen Sundar Govindarajulu and Shreya Banerjee and
John Hummel

Abstract We answer the present paper’s title in the negative. We begin by introduc-
ing and characterizing “real learning” (R L) in the formal sciences, a phenomenon
that has been firmly in place in homes and schools since at least Euclid. The defense
of our negative answer pivots on an integration of reductio and proof by cases, and
constitutes a general method for showing that any contemporary form of machine
learning (ML) isn’treal learning. Along the way, we canvass the many different con-
ceptions of “learning” in not only Al, but psychology and its allied disciplines; none
of these conceptions (with one exception arising from the view of cognitive devel-
opment espoused by Piaget), aligns with real learning. We explain in this context by
four steps how to broadly characterize and arrive at a focus on RL.
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8 Appendix: The Formal Method

The following deduction uses fonts in an obvious and standard way to sort between
functions (f), agents (a), and computing machines (m) in the Arithmetical Hierar-
chy. Ordinary italicized Roman is used for particulars under these sorts (e.g. f is
a particular function). In addition, ‘C* denotes any collection of conditions consti-
tuting jointly necessary-and-sufficient conditions for a form of current ML, which
can come from relevant textbooks (e.g. Luger, 2008; Russell and Norvig, 2009) or
papers; we leave this quite up to the reader, as no effect upon the validity of the
deductive inference chain will be produced by the preferred instantiation of ‘C.” It
will perhaps be helpful to the reader to point out that the deduction eventuates in
the proposition that no machine in the ML fold that in this style learns a relevant
function f thereby also real-learns f. We encode this target as follows:

(%) —3m 3f ¢ := MLlearns(m,f) A y := RLlearns(m, f) A Cg (m, ) F* (ci')—(ciii),, (m, f)]

Note that (x) employs meta-logical machinery to refer to particular instantiations
of C for a particular, arbitrary case of ML (¢ is the atomic sub-formula that can be
instantiated to make the particular case), and particular instantiations of the triad
(ci)—(ciii) for a particular, arbitrary case of RL (y is the atomic sub-formula that
can be instantiated to make the particular case). Meta-logical machinery also allows
us to use a provability predicate to formalize the notion that real learning is produced
by the relevant instance of ML. If we “pop” ¢/ to yield ¢'/y’ we are dealing with
the particular instantiation of the atomic sub-formula.

The deduction, as noted in earlier when the informal argument was given, is
indirect proof by cases; accordingly, we first assume —(x), and then proceed as
follows under this supposition.

(1) [Vf,a[f: N+ N — (RLlearns(a,f) — (i)—(iii))] |Def of Real Learning
(2) [MLlearns(m, f) A RLlearns(m, f) A f : N+ N  |supp (for 3 elim on (x))
(3) |[Vm,f [f: N+ N — (MLlearns(m,f) <> C(m,f))] |Def of ML
@) |V [f: NN = (TurComp(f) V TurUncomp(f))] |theorem
(5) |TurUncomp(f) supp; Case 1
(6) [-3m 3§ [(f : N+ NATurUncomp(f) AC(m,f)] |theorem
| (7) [-3 m MLlearns(m, f) (6), (3)
| (8) | L (7). (2)
(9) |TurComp(f) supp; Case 2
= |(10)|Cyr (m, f) 2).(3)
RAER))] (ci’)—(ciii)v! (m, f) from supp for 3 elim on (%) and provability
-~ (12) ﬁ(ci’)—(ciii)w: (m, f) inspection: proofs wholly absent from C
-S(13)| L (11),(12)
S(14)| L reductio; proof by cases
T — EE—
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Let’s look @ the paper ...
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e Step |: Observe the acute discontinuity of human vs. nonhuman cognition.
(Only humans understand and employ e.g. abstract reasoning schemas
unaffected by the physical; layered quantification; recursion; and infinite
structures/infinitary reasoning.)

e Step 2: Exclude forms of “learning” made possible via exclusive use of
reasoning and communication capacities in nonhuman animals (i.e. exclude
forms of “learning” that don’t eventuate in bona fide jtb knowledge).

e Step 3: Within the focus arising from Step 2, further narrow the focus to HL=
reasoning and communication sufficiently powerful to perceive, and be
successfully applied to, both (i) cohesive bodies of declarative content, and (ii)
sophisticated natural-language content. Dub this RC.

e Step 4: Real Learning (7)) is the acquisition of genuine knowledge via RC.



But how is this mechanizable?

Well, how about a new form of machine learning!?
(by reasoning)
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Learning Ex Nihilo
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Abstract

This paper introduces, philosophically and to a degree formally, the novel concept of learn-
ing ez nihilo, intended (obviously) to be analogous to the concept of creation ez nihilo.
Learning ez nthilo is an agent’s learning “from nothing”, by the suitable employment
of inference schemata for deductive and inductive reasoning. This reasoning must be
in machine-verifiable accord with a formal proof/argument theory in a cognitive calculus
(i.e., here, roughly, an intensional higher-order multi-operator quantified logic), and this
reasoning is applied to percepts received by the agent, in the context of both some prior
knowledge, and some prior and current interests. Learning ex nihilo is a challenge to con-
temporary forms of ML, indeed a severe one, but the challenge is here offered in the spirit
of seeking to stimulate attempts, on the part of non-logicist ML researchers and engineers,
to collaborate with those in possession of learning-ez nihilo frameworks, and eventually
attempts to integrate directly with such frameworks at the implementation level. Such
integration will require, among other things, the symbiotic interoperation of state-of-the-
art automated reasoners and high-expressivity planners, with statistical/connectionist ML
technology.

1 Introduction

This paper introduces, philosophically and to a degree logico-mathematically, the novel con-
cept of learning ez nihilo, intended (obviously) to be analogous to the concept of creation ez
nihilo.! Learning ez nihilo is an agent’s learning “from nothing,” by the suitable employment
of inference schemata for deductive and inductive? (e.g., analogical, enumerative-inductive, ab-
ductive, etc.) reasoning. This reasoning must be in machine-verifiable accord with a formal

1No such assumption as that creation ez nihilo is real or even formally respectable is made or needed in the
present paper. The concept of creation ez nihilo is simply for us an intellectual inspiration — but as a matter of
fact, the literature on it in analytic philosophy does provide some surprisingly rigorous accounts. In the present
draft of the present paper, we don’t seek to mine these accounts.

2Not to be confused with inductive logic programming (about which more will be said later), or inductive
deductive techniques and schemas (e.g. mathematical induction, the induction schema in Peano Arithmetic,
etc.). As we explain later, learning ez nihilo is in part powered by non-deductive inference schemata seen in
inductive logic. An introductory overview of inductive logic is provided in [39].

G. Danoy, J. Pang and G. Sutcliffe (eds.), GCAI 2020 (EPiC Series in Computing, vol. 72), pp. 1-27
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Or ... 11 Strength Factors

Acceptable An agent a at time ¢ finds ¢ acceptable iff with-
holding ¢ is not more reasonable than believing in ¢.

W(a,1,0) #{ B(a,t,9); or

1
B (aat7¢) Mg (_lB(a,t,q))/\—lB(a,t’—lq))) )‘? B(a,t,q))

Some Presumption in Favor An agent a at time ¢ has some
presumption in favor of ¢ iff believing ¢ at ¢ is more rea-
sonable than believing —¢ at time #:

B2(a,,0) ¢ (B(a,,0) ~', B(a,t, )

Beyond Reasonable Doubt An agent a at time ¢ has beyond
reasonable doubt in ¢ iff believing ¢ at ¢ is more reason-
able than withholding ¢ at time ¢:

B(a,t,9) =z W(a,2,0); or

3
POED N (Bas,0) ¢ (~Bla,t,0)A-Blar, )

Evident A formula ¢ is evident to an agent a at time ¢ iff ¢ is
beyond reasonable doubt and if there is a Y such that be-
lieving Y is more reasonable for a at time ¢ than believing
0, then a is certain about Y at time 7.

B3 (a,t,0)A
BYa,1,0) & { _  [B@ny)~{B(a10)
v =B°(a,1,y)

Certain An agent a at time ¢ is certain about ¢ iff ¢ is beyond
reasonable doubt and there is no Y such that believing y
is more reasonable for a at time ¢ than believing ¢.

B3(a,1,0)A

5
B>(a,t,0) & {ﬂw : B(a,t,V) =% B(a,t,0)
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At the start of the event, the vehicle was in autonomous mode in the rightmost of four lanes traveling in the same
direction, and the pedestrian was walking her bicycle across the street starting on the leftmost side of the roadway.



The vehicle’s radar first detected the pedestrian 5.6 seconds before the fatal collision. Less than half a second later,
the lidar detected the pedestrian but classified her as “Other”.




For the next 2.5 seconds, the lidar re-classified her several times, alternating between “Vehicle” and “Other”. The
vehicle’s automated-driving system (ADS) attempted to predict her direction of travel several times, but discarded
any previous information about her trajectory every time it reclassified her.



With 2.6 seconds until collision, the lidar classified her as a bicycle but, as it was yet again changing her classification,
discarded any past trajectory information, and hence determined that she was not moving. Up to this point, the car
had not taken any evasive or corrective action.




With |.5 seconds left, the lidar re-classified her yet again, this time as “Unknown”. The system once again loses
all of its tracking history. However, since at this point the pedestrian had entered the vehicle’s lane, the ADS
generated a plan to turn the car to the right to avoid her.




Three hundred milliseconds later, the lidar re-classified her as a bicycle, and determined that it would be impossible at
this point to maneuver around her.With just 200 ms until collision, the ADS began braking the vehicle, pitifully too late
to stop in time.




would’ve handled it. ..

Three hundred milliseconds later, the lidar re-classified her as a bicycle, and determined that it would be impossible at
this point to maneuver around her.With just 200 ms until collision, the ADS began braking the vehicle, pitifully too late
to stop in time.
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Formalizing & implementing this ...

DCEC Signature

S ::= Agent | ActionType | Action C Event | Moment | Fluent
action : Agent X ActionType — Action

initially : Fluent — Formula

holds : Fluent X Moment — Formula

happens : Event X Moment — Formula

clipped : Moment X Fluent X Moment — Formula
initiates : Event X Fluent X Moment — Formula
terminates : Event X Fluent X Moment — Formula
\prior : Moment X Moment — Formula
tu=x:S|c:S|f(t1,...,tn)
q:Formula | =@ |pAY | PV Y |Vx: ¢(x)|Tx: ¢(x)
P(a,t, ¢) |K(a,1, ¢) |S(a,b,t, ¢) | S(a,t, ¢)
C(t, ¢) | B(a,t, ¢) | D(a,t, ¢) | 1(a,1, ¢)
O(a,t, ¢, (-)happens(action(a*, a),t’))

Modal Operator Descriptors:
Perceives, Knows, Says, Common-knowledge
Believes, Desires, Intends, Ought-to

DCEC Inference Schemata

K(a,t1,I), T+ ¢, h <t k] B(a,t;,I), T'r¢, 1 <t Us]
K(a, 1, 9) * B(a, 1, 9) y

C (1] (]
(t,P(a,t, ¢) » K(a,t, ¢)) C(t,K(a,t, ¢) — B(a,t, ¢))

Clt,p)t<t1...t <ty ] K(a,t, ¢)
K(ai, 11, K(an, tn, ¢)--) ¢

[14]

[I5]
[Z6]

C(t,K(a, t1, ¢1 = ¢2)) = K(a, 12, ¢1) = K(a, 13, ¢2)

C(t,B(a,t1, ¢1 = ¢2)) = B(a, 1z, ¢1) — B(a, t3, ¢2)

I
€, C(n, 1 — 92) = Cltz, o) = C(13, 92) )
I I
Covr oo oo B Chpomotog)
I

AT W gy ryppgraprryy S
B(a,t, ¢) B(a,t,¢ — ¥) - B(a,t, ¢) B(a,t,y) 7
Bla.t,v) [N1a] Ba,t, oA 0) [T11p]

S(s, h,t, @) ; I(a,t, happens(action(a*, a),1"))
B(h,t,B(s,t, ¢)) [h2] P(a,t, happens(action(a*, a),t’))

B(a,t,¢) B(a,t,0(a,t, ¢,x)) O(a,t, ¢, x)

K(a,t,I(a,t, x))

[113]

[114]
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happens : Event X Moment — Formula

clipped : Moment X Fluent X Moment — Formula
initiates : Event X Fluent X Moment — Formula
terminates : Event X Fluent X Moment — Formula
\prior : Moment X Moment — Formula
tu=x:S|c:S|f(t1,...,tn)

q:Formula | =@ |pAY | PV Y |Vx: ¢(x)|Tx: ¢(x)
P(a,t, ¢) |K(a,1, ¢) |S(a,b,t, ¢) | S(a,t, ¢)

¢ =
C(t, ¢) | B(a,t, ¢) | D(a,t, ¢) | I(a,1, $)
O(a,t, ¢, (-)happens(action(a*, a),t’))
Modal Operator Descriptors:
Perceives, Knows, Says, Common-knowledge
Believes, Desires, Intends, Ought-to
DCEC Inference Schemata

K(a,11,T), T-¢, h <t B(a,t;,T), T+¢, t1 <t
[x] (8]
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C [11] (]
(t,P(a,t, ¢) — K(a,t, ¢)) C(t,K(a,t, ¢) —» B(a,t, ¢))

Ct,p)t<t...t <ty ] K(a,t, ¢)
K(ai, 11, K(@nstn, @) ) ¢

[14]

[I5]
[Z6]

C(t,K(a,t1, ¢1 = ¢2)) — K(a, 12, ¢1) — K(a, 13, ¢2)

C(t,B(a,t1, ¢1 = ¢2)) = B(a, 1z, ¢1) = B(a, t3, ¢2)

Ct, Ctr, #1 > $2)) = Claa, #1) = Clas, o) 1)
Covr oo oo B Chpomotog)
I
AT W gy ryppgraprryy S
B(a,t, ¢) B(a,t,¢ — ¥) (1] B(a,t, ¢) B(a,t,y) (1]
B(a,1,¥) " B(a A Y) e
S(s, h,t, @) ; I(a,t, happens(action(a*, a),1")) P
B(h,t,B(s,t, ¢)) [h2] P(a,t, happens(action(a*, a),t’)) (73]
B(a’ t’ ¢) B(a’ t’ o(a’ t’ ¢’X)) o(a’ t’ ¢’X)

K(a,t,I(a,t, x))
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[114]

2.2 Inductive Deontic Cognitive Event Calculus

DCEC employs no uncertainty system (e.g., probability measures, strength factors, or
likelihood measures) and hence is purely deductive. Therefore, as we wish to enable
our agents to reason about situations involving uncertainty, we must ultimately utilize
the Inductive DCEC: TDCEC.

In general, to go from a deductive to an inductive cognitive calculus, we require
two components: (1) an uncertainty system, and (2) inference schemata that delineate
the methods by which inferences linking formulae and other information can be used
to build formally valid arguments.

The particular uncertainty system we use herein is discussed in §2.3 The inference
schemata of ZDCEC consist of the union of the set presented in §2.1|with that in the
box titled Additional Inference Schemata for ZDCEC| Likewise, the signature of
IDCEC subsumes that of the deductive DCEC; the syntax of ZDCEC also includes
the forms given in the box titled/Additional Syntax for ZDCEC|

Additional Syntax for ZDCEC

¢ = { B7 (a,t, ¢)
where o € [-5,-4, ..., 4,5]

Additional Inference Schemata for ZDCEC

P(a,t;, ¢1), THt1 <t
B*(a, 1, ¢)

7]

B (a,t1, $1),---,B™(a,tm, dm), {D1,- -, dm} F &, {D1,..., dm} ¥ {,TH1; <t
Brin (@17 (a,1, 9)
where o~ € [0,1,...,5,6]

3]

CuB7 = [15]
(t,B 7 (a,t, $) & B (a,t,~¢))

Briefly, B9 (a, t, ¢) denotes that agent a at time ¢ believes ¢ with uncertainty o-.
We justify in the next section the range of values for o.

The first inference schema allows agents to infer evident beliefs (o~ = 4, as defined
in the next section) from what they perceive!5| The second schema allows agents to
infer a belief that is provable from the beliefs they currently assert, so long as the
belief set is not inconsistent. In practice, we usually check that the belief set is
consistent by attempting to prove a reserved propositional atom ¢ which does not
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C(t,B(a,t1, ¢1 = ¢2)) = B(a, 1z, ¢1) = B(a, t3, ¢2)

Ct, Ctr, #1 > $2)) = Claa, #1) = Clas, o) 1)
Covrpoobm) M Chposodo-e)
I
AT W gy ryppgraprryy S
B(a,t, ¢) B(a,t,¢ — ¥) (1] B(a,t, ¢) B(a,t,y) (1]
B(a.1, ) ta B(a.t, 6 A ) e
S(s, h,t, @) ; I(a,t, happens(action(a*, a),1")) P
B(h,t,B(s,t, ¢)) [h2] P(a,t, happens(action(a*, a),t’)) (73]
B(a’ t’ ¢) B(a’ t’ o(a’ t’ ¢’X)) o(a’ I’ ¢’X)

K(a,t,I(a,t, x))

[114]

, :ontic Cognitive Event Calculus

DCEC employs no uncertainty system (e.g., probability measures, strength factors, or
likelihood measures) and hence is purely deductive. Therefore, as we wish to enable
our agents to reason about situations involving uncertainty, we must ultimately utilize
the Inductive DCEC: TDCEC.

In general, to go from a deductive to an inductive cognitive calculus, we require
two components: (1) an uncertainty system, and (2) inference schemata that delineate
the methods by which inferences linking formulae and other information can be used
to build formally valid arguments.

The particular uncertainty system we use herein is discussed in §2.3 The inference
schemata of ZDCEC consist of the union of the set presented in §2.1|with that in the
box titled Additional Inference Schemata for ZDCEC| Likewise, the signature of
IDCEC subsumes that of the deductive DCEC; the syntax of ZDCEC also includes
the forms given in the box titled/Additional Syntax for ZDCEC|

Additional Syntax for ZDCEC

¢ = { B7 (a,t, ¢)
where o € [-5,-4, ..., 4,5]

Additional Inference Schemata for ZDCEC

P(a,t;, ¢1), THt1 <t
B*(a, 1, ¢)

7]

B (a,t1, $1),---,B™(a,tm, dm), {D1,- -, dm} F &, {D1,..., dm} ¥ {,TH1; <t
Brin (@17 (a,1, 9)
where o~ € [0,1,...,5,6]

3]

CuB7 = [15]
(t,B 7 (a,t, $) & B (a,t,~¢))

Briefly, B9 (a, t, ¢) denotes that agent a at time ¢ believes ¢ with uncertainty o-.
We justify in the next section the range of values for o.

The first inference schema allows agents to infer evident beliefs (o~ = 4, as defined
in the next section) from what they perceive!5| The second schema allows agents to
infer a belief that is provable from the beliefs they currently assert, so long as the
belief set is not inconsistent. In practice, we usually check that the belief set is
consistent by attempting to prove a reserved propositional atom ¢ which does not






Loggik kan hjelpe deg a leve for alltid.



