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Theorem: You should give Selmer all your savings ($k) to play the game.
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| /2 $2 bl
2 | /4 $4 $I
3 /8 $3 bl
4 /16 $16 $I
S 1/32 $32 $I
6 /64 $64 $I
/ /128 $128 $I
8 1/256 $256 $I
9 /512 $512 $I
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Theorem: You should give Selmer all your savings ($k) to play the game.

Proof: The expected value of playing the game is $(). We know that
you're rational, so since any finite amount of dollars isn't an infinite amount
of dollars, you will pay $k to us to play. QED



The Optimality Principle

When choosing between alternative actions a; and
ay, rationality dictates choosing that action that
maximizes expected value, computed by multiplying
the value of each outcome that can result from each
action by the probability that it will occur, adding the

results together, and selecting the action associated
with the higher utility.
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Bernoulli’s Bad Idea

n prob(n) Prize Utiles Expected Utility
| /2 $2 0.30 0.1505
2 | /4 $4 0.602 0.1505
3 /8 $3 0.903 0.1129
4 /16 $16 .204 0.0753
5 /32 $32 .505 0.0470
6 | /64 $64 1.806 0.0282
/ /128 $128 2.107 0.0165
8 11256 $256 2408 0.0094
9 /512 $512 2.709 0.0053
10 /1024 $1,024 3.010 0.0029

Refutation: Selmer & Naveen offer a variant game, based on stacked exponentiation.
E.g., let's play a game in which the prize money is 10% Sorry Bernoulli QED
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There are a lot of ornate but unsuccessful proposed solutions.

The St. Petersburg Paradox: A Subjective Probability Solution

Hongbin Wang (hwang@tamhsc.edu)
Yanlong Sun (ysun@tamhsc.edu)
Jack W. Smith (jwsmith@tamhsc.edu)
Texas A&M University Health Science Center
2121 West Holcombe Blvd, Suite 1109, Houston, TX 77030 USA

Abstract

The St. Petersburg Paradox (SPP), where people are willing to
pay only a modest amount for a lottery with infinite expected
gain, has been a famous showcase of human (ir)rationality.
Since inception multiple solutions have been proposed,
including the influential expected utility theory. Criticisms
remain due to the lack of a i justification for the utility
function. Here we report a new solution to the long-standing
paradox, which focuses on the probability weighting
component (rather than the value/utility component) in
calculating the expected value of the game. We show that a
new Additional Transition Time (AT) based measure,
motivated by both physics and psychology, can naturally lead
to a converging expected value and therefore solve the
paradox.

Keywords: human judgment and decision

probability, St. Petersburg Paradox,

making,

Fate laughs at probabilities.
-- E. G. Bulwer-Lytton

Introduction

Suppose you are offered the following gamble:
* Toss a fair coin. If you get a head, you are paid $1
and the game is over. Otherwise, toss again.
* If you get a head in the second tossing, you are paid
$2 and the game is over. Otherwise, toss again.
* Ifyou get a head in the third tossing, you are paid $4
and the game is over. Otherwise, toss again.
¢ ... Game continues until you get a head. If you get a
head in the nth tossing, you will be paid $2"".
How much are you willing to pay to play this gamble?
A simple calculation shows that the gamble’s expected
value, S, is infinite:

. a1 11
s =szp"2"" =SE(;)”2”" =S+

=1 =

Eq. 1

where n is the number of tosses to get the first head (ie.,
after a steak of n-1 tails, one gets a head, and the game is
over).

The question is, are you willing to pay any price for a
right to play this game? Probably not. More than three
hundred years ago, in 1713, Nicolas Bernoulli, a young
Swiss mathematician, first proposed this problem and
pointed out that a sensible person would only be willing to
pay very little to play the game. This constitutes a
contradiction, which nowadays is called the St. Petersburg
Paradox (SPP).

A Little History

The SPP was so named after the eponymous Russian city,
where Daniel Bernoulli, a mathematician and Nicholas
Bernoulli’s cousin, published his classical solution to the
problem in 1738. However, the problem was initially
proposed by Nicolas Bemoulli in 1713, who was clearly
troubled by it. According to him, while the expectation of
game gain was infinity, the player would be guaranteed to
lose since it is “morally impossible™ that one not achieve a
head in a finite number of tossing.

In 1728, Gabriel Cramer, another Swiss mathematician,
wrote to N. Bernoulli and suggested a solution. In Cramer’s
solution, money’s quantity was replaced by its “moral
value”, representing the pleasure or sorrow money (or loss
of money) could produce. In doing so Cramer showed the
expectation would converge to less than $3 if “one wishes to
suppose that the moral value of goods was as the square root
of the mathematical quantities™.

N. Bernoulli was not entirely satisfied with this solution.
In his reply to Cramer, N. Bernoulli wrote that the pleasure
difference “does not demonstrate the true reason™ for why
one should not pay infinity to play the game. Even Cramer
himself thought his square-root assumption about money
and pleasure was not just.

Eventually in 1738, D. Bemoulli published his solution to
the problem (Bernoulli, 1738). D. Beroulli’s solution was
similar to Cramer’s and based on the concept of utility,
which measured the usefulness of values and was taken to
be a logarithmic function of values. It was shown that while
the expected value diverged the expected utility converged.
D. Bemoulli’s solution was seminal and extremely
influential, and has since shaped the whole field of

ics and of the p logy of decision making.

It was interesting to note that N. Bernoulli vigorously
objected his cousin’s approach. A series of communication
showed that the two had engaged in serious arguments. To
N. Bernoulli, the concept of utility, similar to the “moral
value” of Cramer, was arbitrary and, to a certain extent,
irrelevant. Rather, the concern here was to find a more
general way to show if a game was fair, regardless of who
was playing the game. “For example a game is considered
fair, when the two players bet an equal sum on a game under
equal conditions, although according to your theory, and by
paying attention to their riches, the pleasure or the
advantage of gain in the favorable case is not equal to the
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Solution

|. It’s irrational to bank on things that are beyond
reasonable belief; you know this.

2. It’s beyond reasonable belief that you’ll win back
our $30 price to play; you know this too.

3. Hence, since you're rational, you’ll decline.

['t's beyond reasonable belief that $32 will be won
(an amount that would make a bet of $30 a nice
wager), since the odds of that happening are |/32.

Symmetrically put, a rational agent will believe
at level 3 that $30 dollars will be lost. (Why?)

The needed principle: Ceteris paribus, It a rational agent @
believes at level 3 that a wager cutting meaningfully into that
agent's disposable income will be lost, a will not make that wager.

From SEP entry: ... few of us would pay even
$25 to enter such a game.” Now we know why!




Paradoxes are engines of
progress in formal logic.

E.g., Russell’s Paradox — as we’ve seen.
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perfectly rational person can indeed have such a
belief (upon considering a fair, large lottery).
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believe =P at the same time.

® The Lottery Paradox (apparently) shows, courtesy
of its two Sequences (of Reasoning), that a
perfectly rational person can indeed have such a
belief (upon considering a fair, large lottery).

® Contradiction! — and hence a paradox!



Types of Paradoxes

® Deductive Paradoxes. The reasoning in question is
exclusively deductive.

® Russell’s Paradox
® The Liar Paradox
® Richard’s Paradox

® [nductive Paradoxes Some of the reasoning in
question uses non-deductive reasoning (e.g.,
probabilistic reasoning, abductive reasoning,
analogical reasoning, etc.).
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® Deductive Paradoxes. The reasoning in question is
exclusively deductive.

® Russell’s Paradox
® The Liar Paradox

® Richard’s Paradox

® [nductive Paradoxes Some of the reasoning in
question uses non-deductive reasoning (e.g.,

probabilistic reasoning, abductive reasoning,
analogical reasoning, etc.).




Inductive Logic

the hallmark of deductive logic is proof, the hallmark of inductive logic is the concept
of an argument. An exceptionally strong kind of argument is a proof, but plenty of
arguments fall short of being proofs — and yet still have considerable force. For
instance, consider the following argument a,:

(1) Tweety is bird.
(2) Most birds can fly.
(3) Tweety can fly.

For start contrast, consider as well this argument (a>):

(1) 3 isapositive integer.
(2’)  All positive integers are greater than 0.
(3) 3isgreater than 0.

The second of these arguments qualifies as an outright proof. That is, using the
notation much employed before the present chapter:

(10,20 + @)

But in stark contrast, argument a, is not a proof that Tweety can fly. The reason is
obvious: (3) isn't deduced from the combination of (1) and (2); that is,

(1), (2} #(3)
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Inductive-Reasoning Example
from Pollock — for Peek Ahead



Imagine the following:

Keith tells you that the morning news predicts rain in
Troy today. However, Alvin tells you that the same news
report predicted sunshine.



Imagine the following: Keith tells you that the morning
news predicts rain in Tucson today. However, Alvin tells
you that the same news report predicted sunshine.

Without any other source of information, it would be
irrational to place belief in either Keith’s or Alvin’s
statements.



Imagine the following: Keith tells you that the morning news
predicts rain in Tucson today. However, Alvin tells you that the
same news report predicted sunshine.

Without any other source of information, it would be irrational to
place belief in either Keith’s or Alvin’s statements.

Further, suppose you happened to watch the noon news report,
and that report predicted rain. Then you should believe that it
will rain despite your knowledge of Alvin’s argument.



Defeasible Reasoning in OSCAR

K- Keith says that M N
A- Alvin says that ~M

= —
= 44— X

M- The morning news said that R

R- It is going to rain this afternoon

N- The noon news says that R

0 <€
2
A

All such can be absorbed into our inductive logics
and our automated inductive reasoners (= our Al).



In Our Inductive Modal Logic

fact

(1) ‘ K (you, S(keith,S(m, rain)))
K fact

(you, S(alvin, S(m, —rain)))




In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain))) fact

(2) | K(you, S(alvin, S(m, —rain))) fact
| (3) | S(keith, S(m, rain)) ?

(4) | S(alvin,S(m, —rain))) 7




In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain)))

(2) | K(you, S(alvin, S(m, —rain)))
| (3) | S(keith, S(m, rain))

(4) | S(alvin, S(m, —rain)))

(5) | S(keith, ) — B?*(you, ¢)

fact
fact
?
0

Testimonial P1



In Our Inductive Modal Logic

) | K(you, S(keith, S(m, rain))) fact

) | K(you, S(alvin, S(m, —rain))) fact

) | S(keith, S(m, rain)) ?

) | S(alvin,S(m, —rain))) 7

) | S(keith, ¢) — B?(you, ¢) Testimonial P1
) | B%(you, S(m, rain)) A B*(you, S(m, —rain))

(1
(2
(3
Ll (4
(5
(6



In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain))) fact
(2) | K(you, S(alvin, S(m, —rain))) fact
| (3) | S(keith, S(m, rain)) ?
| (4) | S(alvin,S(m,—rain))) ?
(5) | S(keith, ) — B?*(you, ¢) Testimonial P1
(6) | B*(you,S(m, rain)) A B*(you, S(m, —~rain))
(7) | =B*(you, S(m, rain)) A ~B?(you, S(m, —rain)) | “Clash” Principle



In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain))) fact

(2) | K(you, S(alvin, S(m, —rain))) fact

(3) | S(keith,S(m, rain)) ?

(4) | S(alvin, S(m, —rain))) 7

(5) | S(keith, ) — B?*(you, ¢) Testimonial P1
(6) | B*(you,S(m, rain)) A B*(you, S(m, —~rain))

(7) | =B*(you, S(m, rain)) A ~B?(you, S(m, —rain)) | “Clash” Principle
(8) | K(you,S(noonnews, rain))




In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain))) fact

(2) | K(you, S(alvin, S(m, —rain))) fact

(3) | S(keith,S(m, rain)) ?

(4) | S(alvin, S(m, —rain))) 7

(5) | S(keith, ) — B?*(you, ¢) Testimonial P1
(6) | B*(you,S(m, rain)) A B*(you, S(m, —~rain))

(7) | =B*(you, S(m, rain)) A ~B?(you, S(m, —rain)) | “Clash” Principle
(8) | K(you,S(noonnews, rain))

(9) | S(noonnews, rain) ?



In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain))) fact

(2) | K(you, S(alvin, S(m, —rain))) fact

(3) | S(keith,S(m, rain)) ?

(4) | S(alvin, S(m, —rain))) 7

(5) | S(keith, ) — B?*(you, ¢) Testimonial P1
(6) | B*(you,S(m, rain)) A B*(you, S(m, —~rain))

(7) | =B*(you, S(m, rain)) A ~B?(you, S(m, —rain)) | “Clash” Principle
(8) | K(you,S(noonnews, rain))

(9) | S(noonnews, rain) ?

(10) | S(noonnews, ) — B3 (you, @) Testimonial P2



In Our Inductive Modal Logic

(1) | K(you,S(keith,S(m, rain))) fact

(2) | K(you, S(alvin, S(m, —rain))) fact

(3) | S(keith,S(m, rain)) ?

(4) | S(alvin, S(m, —rain))) 7

(5) | S(keith, ) — B?*(you, ¢) Testimonial P1
(6) | B*(you,S(m, rain)) A B*(you, S(m, —~rain))

(7) | =B*(you, S(m, rain)) A ~B?(you, S(m, —rain)) | “Clash” Principle
(8) | K(you,S(noonnews, rain))

(9) | S(noonnews, rain) ?

(10) | S(noonnews, ) — B3 (you, @) Testimonial P2
(11

) | B3 (you, rain)



The Lottery Paradox ...






Stewants
ShopSs

WE ARE CLOSER TO YOU!




Stewoant's

\Shops

E: “Please go down to Stewart’s & get the T U.”




Stewoant's

E: “Please go down to Stewart’s & get the T U.”

S: “I'm sorry, E, I'm afraid | can’t do that.
It would be irrational.”



Stewoant's

E: “Please go down to Stewart’s & get the T U.”

S: “I'm sorry, E, I'm afraid | can’t do that.
It would be irrational.”






Sequence |



)

Sequence |




Sequence |












‘/] Q

Sequence | ‘;7 ‘ Sequence 2
o N
\ ‘



















Sequence |

-

C‘

(‘ Sequence 2

Contradiction!




Sequence |



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:

Witi Wit ... Wty (1)



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:

Witi Wit ... Wty (1)

We then deduce from this that there is at least one ticket that will
win, a proposition represented — using standard notation — as:



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:

Witi Wit ... Wty (1)

We then deduce from this that there is at least one ticket that will
win, a proposition represented — using standard notation — as:

3t Wt (2)



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:

Witi Wit ... Wty (1)

We then deduce from this that there is at least one ticket that will
win, a proposition represented — using standard notation — as:

3t Wt (2)

Very well; perfectly clear so far. And now we can add another deductive step:
Since our rational agent a can follow this deduction sequence to this point,
and since D is assumed to be indubitable, it follows that our rational agent in
turn believes (2); i.e., we conclude Sequence | by obtaining the following:



Sequence |

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:

Witi Wit ... Wty (1)

We then deduce from this that there is at least one ticket that will
win, a proposition represented — using standard notation — as:

3t Wt (2)

Very well; perfectly clear so far. And now we can add another deductive step:
Since our rational agent a can follow this deduction sequence to this point,
and since D is assumed to be indubitable, it follows that our rational agent in
turn believes (2); i.e., we conclude Sequence | by obtaining the following:

B, 3t;Wt; (3)









Sequence 2



Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.



Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,

we can write the probability for each ticket to win as a conjunction:



Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
A prob(Wte) = — A ... Aprob(Wtip) = — (1)

prob(Wt) = 1-3507000.000.000 ~ 1T 1T 1T




Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
b(Wty) = — A prob(Wiy) = — A ... A prob(Wihip) = — (1
prob(Wt) = 1550000 000.000 ~ 17/ PP Wha) = 17 prob(Whir) = 77 (1)

For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:



Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
b(Wty) = — A prob(Wiy) = — A ... A prob(Wihip) = — (1
prob(Wt) = 1550000 000.000 ~ 17/ PP Wha) = 17 prob(Whir) = 77 (1)

For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:

B,-Wti AB,—~WtasA...\NB,~Wtqip (2)



Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
prob(Wty) = A prob(Wty) = — A ... Aprob(Wtir) = — (1)

1,000, 000,000,000 1T 17 1T

For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:

B,-Wti AB,—~WtasA...\NB,~Wtqip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:




Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
prob(Wty) = A prob(Wty) = — A ... Aprob(Wtir) = — (1)

1,000, 000,000,000 1T 17 1T
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti AB,—~WtasA...\NB,~Wtqip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:

Ba(—Ith AN-Witas Ao A —|Wt1T) (3)




Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
prob(Wty) = A prob(Wty) = — A ... Aprob(Wtir) = — (1)

1,000, 000,000,000 1T 17 1T
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti AB,—~WtasA...\NB,~Wtqip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:

Ba(—Ith AN-Witas Ao A —|Wt1T) (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:




Sequence 2

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:

1 1 1 1
prob(Wty) = A prob(Wty) = — A ... Aprob(Wtir) = — (1)

1,000, 000,000,000 1T 17 1T
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti AB,—~WtasA...\NB,~Wtqip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:

Ba(—Ith AN-Witas Ao A —|Wt1T) (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)













S e

Sequence | ? (‘ Sequence 2
‘\/Baﬁﬂtthz- Baﬂt,th:\/




Sequence |

-

C‘

(‘ Sequence 2

(The contradiction we sketched earlier has arrived.)
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... but let’s use the simpler scheme.
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Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
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We then deduce from this that there is at least one ticket that will
win, a proposition represented — using standard notation — as:

3t Wt (2)

Very well; perfectly clear so far. And now we can add another deductive step:
Since our rational agent a can follow this deduction sequence to this point,
and since D is assumed to be indubitable, it follows that our rational agent in
turn believes (2); i.e., we conclude Sequence | by obtaining the following:

B,3t,Wt; (3)
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As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular

ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,

we can write the probability for each ticket to win as a conjunction:
prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti; AB,~Wits A...NB,Wtyr (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B,(-Wti AN=Wita A... AN=Witip)  (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)
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Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.

Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.
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This is why, to Mega Millions ticket holder:
“Sorry. I'm rational, and | believe you won’t win.”



To be clear about the effects of the first principle:
- B2 -3EWx AB23zWa!
-B2-EWx AB23zW 2!
- B 2€Wx AB 3zWa!

Clashes are resolved in favor of higher strength; clashes
propagate backwards through inverse deduction, preserving
affirmation/belief of premises as far as is possible; if no
higher-strength factors, suspend belief. (This means that in this
case belief at level 4 also shoots down belief at level 2,and level I. This is
sort of bizarre, because to retain the belief (at levels 3, 2, |) that every
particular ticket won'’t win, the step that gets to believing the existential
formula is blocked. Pollock doesn’t have steps in his “arguments.” Our
agents thus ends up believing at all levels that some ticket will win, and
believing at all levels 3 and down, of each particular ticket, that it won’t win.)
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