Are Programs Uniformly Finite?
A Size-based Progression in the Context
of Pure General Logic Programming
of Programs Says: ‘“No”

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

ILBAI

Nov 18 2025
ver 1118241351INY

RA/l R

Rensselaer Al a;wd Reasoning Lab

AU SERVICE DE LA SCIENCE

ogic-&-Al In The News

A Powerful Al Breakthrough Is About to Transform the World

The technology driving ChatGPT is capable of so much more. What's coming next will make talking bots
look like mere distractions.

ILLUSTRATION: ELIOT WYATT

By Christopher Mims

Nov 15,2024 09:00 p.m.ET

Listen to this article
10 minutes

The Al revolution is about to spread way beyond chatbots.

From new plastic-eating bacteria and new cancer cures to autonomous helper robots and self-
driving cars, the generative-Al technology that gained prominence as the engine of ChatGPT is
poised to change our lives in ways that make talking bots look like mere distractions.

While we tend to equate the current artificial-intelligence boom with computers that can write,
talk, code and make pictures, most of those forms of expression are built on an underlying
technology called a “transformer” that has far broader applications.

First announced in a 2017 paper from Google researchers, transformers are a kind of Al

Logic-&-Al In The News

A Powerful Al Breakthrough Is About to Transform the World

It’s hardly an exaggeration to say that this one collection of algorithms is the reason that Nvidia

| NVDA-3.26% ¥ | is now the most valuable company on earth, that data centers are popping up all

over the U.S. and the world, driving up electricity consumption and rates, and that chief
executives of AI companies are often—and perhaps mistakenly—asserting that human-level Al
is just around the corner.

From text translation to universal learner

Humans have always acted on the conviction that the universe is full of underlying order—even
if they debated whether the source of that order was divine. Modern Al is in a sense yet another

validation of the idea that every scientist since Copernicus really was onto something.

Modern Al has long been good at recognizing patterns in information. But previous approaches
put serious limits on what more it could do. With language, for example, most Al systems could
only process words one at a time, and evaluate them only in the sequence they were read, which

limited their ability to understand what those words meant.

The Google researchers who wrote that seminal 2017 paper were focused on the process of
translating languages. They realized that an Al system that could digest all the words in a piece
of writing, and put more weight on the meanings of some words than others—in other words,
read in context—could make much better translations.

For example, in the sentence “I arrived at the bank after crossing the river,” a transformer-based
Al that knows the sentence ends in “river” instead of “road” can translate “bank” as a stretch of

land, not a place to put your money.

In other words, transformers work by figuring out how every single piece of information the
system takes in relates to every other piece of information it’s been fed, says Tim Dettmers, an
Al research scientist at the nonprofit Allen Institute for Artificial Intelligence.

talk, code and make pictures, most of those forms of expression are built on an underlying
technology called a “transformer” that has far broader applications.

First announced in a 2017 paper from Goo%le researchers, transformers are a kind of AI

Loglc &-Al In The News

ﬁ From chatbots to actual Transformers —‘
Karol Hausman’s goal is to create a universal Al that can power any robot. “We want to build a
It’SH model that can control any robot to do any task, including all the robots that exist today, and [vidia
nvD| robots that haven’t even been developed yet,” he says. 1p all

over| Hausman’s San Francisco-based startup, Physical Intelligence, is less than a year old, and
exec| Hausman himselfused to work at Google’s Al wing, DeepMind. His company starts with a el Al
is jus variant of the same large language model you use when you access ChatGPT. The newest of
these language models also incorporate and can work with images. They are key to how
Hausman’s robots operate.

Fro

In arecent demonstration, a Physical Intelligence-powered pair of robot arms does what is,
Hum believe it or not, one of the hardest tasks in all of robotics: folding laundry. Clothes can take on -even
ifthd any shape, and require surprising flexibility and dexterity to handle, so roboticists can’t script other
the sequence of actions that will tell a robot exactly how to move its limbs to retrieve and fold

valid

laundry.
Mod Physical Intelligence’s system can remove clothes from a dryer and neatly fold them using a aches
puty system that learned how to do this task on its own, with no input from humans other than a rould

only| mountain of data for it to digest. That demonstration, and others like it, was impressive enough [vhich

limitl that earlier this month the company raised $400 million from investors including Jeff Bezos and

OpenAl

The _ ; — [
tran piece
of wi rds,
read
For 6 -based
Al th tch of
land
In of] he
Systé 5, an
Al rd

t

t

First announced in a 2017 paper from Google researchers, transformers are a kind of Al

Initial Specimen

P
sibls,

sy 1 rs

“BIGGER”

“SMALLER”

A

v

Infinitely long programs that drive infinite super-z machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.
(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.
(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-t machines™,

(e.g. linear-bounded & finite-state automata)

“BIGGER"

“SMALLER”

>

v

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

What is a 7 machine?

“BIGGER"

“SMALLER”

>

v

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

What is a 7 machine?

What Is the meaning of the superscript ¢

“BIGGER"

e
“SMALLER”

>

v

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

“BIGGER"

“SMALLER”

>

v

s;b1ls,

sy 1 rs

P

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

Ps

s;37rs,
Sy 11 8y

S3 21 8,
‘BIGGER” 4 Y
v

1]

I

“SMALLER” |

s;b1ls,

sy 1 rs

P

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

(In response to feedback in Bertinoro.)

Ps

s;37rs,
Sy 11 8y

S3 21 8,

>
<

“BIGGER"

v

z@ Il

“SMALLER” |

s;b1ls,

sy 1 rs

P

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

(In response to feedback in Bertinoro.)

Ps

s;37rs,

Sy 11 8y

S3 21 8,

‘BIGGER” 4 Y
v

1]

w

I

“SMALLER” |

s;b1ls,

sy 1 rs

P

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

(In response to feedback in Bertinoro.)

p
i P

s;37rs,
s;b1ls,
Sy 11 8y
sy 1 rs
S3 21 8,
'BIGGER” 4V Infinitely long programs that drive infinite super-t machines™.
v Infinitely long programs that drive finite sub-z machines™.
i Finitely long programs that drive infinite super-t machines™.
(e.g. infinite-time Turing machines)
—
| Finitely long programs that drive infinite 7 machines™.
(e.g. Turing machines™, register machines™)
“SMALLER” I Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

“BIGGER"

“SMALLER”

>

v

s;b1ls,

sy 1 rs

P3

Infinitely long programs that drive infinite super-t machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.

(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

Theorem: [he Halting
Problem is Turing-unsolvable.

VWe assume an encoding of TMs that permits identification of
each with some m € Z¥, and say that the binary halt function
h maps a machine and its input to | if that machine halts, and
to 2 if it doesn't:

him,n) =1ifm:n— halt
him,n)=2ifm: n— o

50, the theorem we need can be expressed this way:
(%) =3Am" [m" computes h]

where a TM that computes a function { starts with arguments to |
on its tape and goes to the value of { on applied to those
argsuments. Next, let's construct a TM m® that copies a block of
I's (separated by a blank #), and (what BBJ in their Computability
& Logic call) a"dithering” TM:

d

mé:n— haltifn>1; m¢

n— ooifn=1

VWe assume an encoding of TMs that permits identification of
each with some m € Z¥, and say that the binary halt function
h maps a machine and its input to | if that machine halts, and
to 2 if it doesn't:

him,n) =1ifm:n— halt
him,n)=2ifm: n— o

50, the theorem we need can be expressed this way:
(%) =3Am" [m" computes h]

where a TM that computes a function { starts with arguments to |
on its tape and goes to the value of { on applied to those
argsuments. Next, let's construct a TM m® that copies a block of
I's (separated by a blank #), and (what BBJ in their Computability
& Logic call) a"dithering” TM:

d

mé:n— haltifn>1; m¢

n— ooifn=1 p;

Proof: Suppose for reductio that m™" [this is our witness for the
existential quantifier in (%)] computes A. Then we can make a
composite machine m? consisting of m¢ connected to and
feeding m™* which is in turn connected to and feeding m. It's
easy to see (use some paper and pencil/stylus and tablet!) that

(1) ifh(n,n) =1, thenm?> : n — oo
and
(2) if h(n,n) =2, then m> : n — halt.

lo reach our desired contradiction, we simply ask: VWhat happens
when we instantiate n to m> in (1) and (2)? (E.g, perhaps the TM
m? is 5, then we would have A(5,5).) The answer to this

question, and 1ts leading directly to just what the doctor ordered,

s left to the readerr QED

.,

Print ‘non-halter’
Simulate the input (encoded) ™™

If the simulation halts, print ‘halter’

Print

',

‘nhon-halter’

Simulate the input (encoded) ™

If the simulation halts, print ‘halter’

‘BIGGER” 4 VY
v

il

il

"SMALLER” |

Infinitely long programs that drive infinite super-z machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-tr machines™.
(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.

(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

Ps

[M Davis imperative program with oracle calls]

L, IF X#0 GOTO L,

‘BIGGER" 4 W Infinitely long programs that drive infinite super-z machines™.
v Infinitely long programs that drive finite sub-z machines™.
i Finitely long programs that drive infinite super-zr machines™.
(e.g. infinite-time Turing machines)
il Finitely long programs that drive infinite 7 machines™.
(e.g. Turing machines™, register machines™)
“SMALLER” I Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

“BIGGER”

“SMALLER”

A

v

Infinitely long programs that drive infinite super-z machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.
(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.
(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-t machines™,

(e.g. linear-bounded & finite-state automata)

“BIGGER”

“SMALLER”

A

v

Infinitely long programs that drive infinite super-z machines™.

Infinitely long programs that drive finite sub-t machines™.

Finitely long programs that drive infinite super-t machines™.
(e.g. infinite-time Turing machines)

Finitely long programs that drive infinite 7 machines™.
(e.g. Turing machines™, register machines™)

Finitely long programs that drive finite sub-t machines™,

(e.g. linear-bounded & finite-state automata)

(Pure General) Logic Programming ...

There are Iwo Logicist Branches;
Bl:

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, 1920's:

“Ahal | can do this stuff
using combinatory logic!”

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, 1920's:

“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30's:
“Ahal The lambda calculus!

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, 1920's:

“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30's:
“Ahal The lambda calculus!

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, 1920's:

“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30's:
“Ahal The lambda calculus!

Haskell

https://en.wikipedia.org/wiki/Haskell_(programming_language)

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, 1920's:

“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30's:
“Ahal The lambda calculus!

Haskell OCaml, Scheme, ...

https://en.wikipedia.org/wiki/Haskell_(programming_language)

There are Iwo Logicist Branches;
Bl:

Frege, |393:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, 1920's:

“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30's:
“Ahal The lambda calculus!

Haskell OCaml, Scheme, ...

Athena

https://en.wikipedia.org/wiki/Haskell_(programming_language)
http://www.proofcentral.org/athena/

Iwo Logicist Branches; B2:

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Prolog?

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

HyperSlate® : Hyperl og

https://rpi.logicamodernapproach.com

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

5 0 EEEE

PGLP

HyperSlate® : Hyperl og

https://rpi.logicamodernapproach.com

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

5 0 EEEE

PGLP

HyperSlate® : Hyperl og

https://rpi.logicamodernapproach.com

HyperLog:
Historico-logico-programming Landscape

SCh?ZSde simple type theory

¥ t
h h
vk, . . .
Church Lisp S Lisp Family
Combinatory Logic A-calculus N Clojure
§ | | d
v""“% Logic Theorist
:) ﬁ (birth of modern logicist Al) Prolog HyperLog
First “logic programs” Liebniiz
300 BC Dies I 716
Fortran
Java

Smalltalk

First “logic programs”
300 BC

Liebniiz
Dies 1716

Frege
1893

HyperLog:
Historico-logico-programming Landscape

Schéenfinkel
893

o
—3

simple type theory

f
i* :

Church

Combinatory Logic

A-calculus

Lisp

Fortran

ML

Lisp Family

O S5 DD+ >

Smalltalk

Clojure

HyperlLog

Java

First “logic programs”
300 BC

Liebniiz
Dies 1716

Frege
1893

HyperLog:
Historico-logico-programming Landscape

Schéenfinkel
893

o
—3

simple type theory

f
i* :

Church

Combinatory Logic

A-calculus

Lisp

Fortran

ML

Lisp Family

O S5 DD+ >

Smalltalk

Clojure

HyperlLog

Java

HyperLog:

Historico-logico-programming Landscape

Schéenfinkel simple type theory
1893
.! i¥)
Church
Combinatory Logic A-calculus

First “logic programs” Liebniiz Frege
300 BC Dies 1716 1893

Lisp

Fortran

ML

Lisp Family

O S5 DD+ >

Smalltalk

Clojure

~

HyperlLog

Java

HyperLog:

Historico-logico-programming Landscape

Schéenfinkel simple type theory
1893
.! i¥)
Church
Combinatory Logic A-calculus

First “logic programs” Liebniiz Frege
300 BC Dies 1716 1893

Lisp

Fortran

ML

Lisp Family

O S5 DD+ >

Smalltalk

Clojure

~

HyperlLog

y |

Java

HyperLog:
Historico-logico-programming Landscape

Schélizggﬂke' simple type theory /A\ ML
~ t
i e
TR Church Lisp S Lisp Family
Combinatory Logic A-calculus N Clojure
d

~

HyperlLog
A-Prolog 4
First “logic programs” Liebniiz Frege !
300 BC Dies 1716 1893
'
|
]
1
|
Fortran '
'
I
\4
Java

Smalltalk

P L

L= (L,T) : =

R : (P,q) — (YN|U, 8, 7()|x(s))
C 7T(S)|CM(S) — <Y|N‘U75>

degree of “confidence”
program
proof(s)
query
\/‘]P) £ argument(s)
& L / /

(L, SR
; % <Y‘N|U 0, W(S)|CM(S)>
/ C : W(S)‘a(s) — (Y|N|U, 9)

For just “logic programming,” and a vintage approach that
goes back to circa 1970, restrict this to a FOL or a fragment
thereof, and use resolution as the only inference schema.

degree of “confidence”
program
proof(s)
query
\/‘]P) £ argument(s)
L = q__L /

L,T) I —
R : (P,q) — (YIN[U,d,74)|a(s))
(€ mlagy — (YN, 5)

reasoner

checker

For just “logic programming,” and a vintage approach that
goes back to circa 1970, restrict this to a FOL or a fragment
thereof, and use resolution as the only inference schema.

degree of “confidence”
program
proof(s)
\/‘]P) £ argument(s)
& = (L,T) q £ /

R (P,a) — (YIN[U, 6, () |a(s))
/ C : m(s)lo) — (YIN]U,6)

reasoner

checker

For just “logic programming,” and
goes back to circa 1970, restrict t
thereof, and use resolution as the

Create file

DCEC (fragment) Hyperlog

degree of “confidence”

proof(s)

prom

query

L =

argument(s)

\/P L

LT)
d

reasoner

(q) — (YIN[U, 0, ()| l(s))

q L
. (P
C : mlae — (YIN[U,6)

checker

For just “logic programming,” and
goes back to circa 1970, restrict t
thereof, and use resolution as the

Create file

DCEC (fragment) ‘ Hyperlog '

—

prom

degree of “confidence”

proof(s)

query

L =

argument(s)

P L
q L

N

LT)
d

reasoner

(q) — (YIN[U, 0, ()| l(s))

. (P
C : mlae — (YIN[U,6)

checker

For just “logic programming,” and
goes back to circa 1970, restrict t
thereof, and use resolution as the

Create file

Lo = Pure Predicate Calculus n B
DCEC (fragment) ‘ Hyperlog '
——

“Live” function symbols in here allowed.

degree of “confidence”
program
proof(s)
\/]P) £ argument(s)

reasoner

- (Pyq) — (Y|NU, 6, 75 [e(s))
(“C : W(S)‘a(s) — <Y‘N‘U,5>

checker

On the Anatomy of a PGLP Program

On the Anatomy of a PGLP Program

Linguistics

L'LQL meta-level, language ({gb} = N {zp} = 5) |—’u)2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

On the Anatomy of a PGLP Program

Linguistics

L'LQL meta-level, language ({gb} = N {zp} = 5) |_;L2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

Inference
A collection of (deductive and/or inductive) inference schemata.

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} = N {zp} = 5) |_;L2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} = N {zp} = 5) |_;L2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} = N {zp} = 5) |_;L2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} = N {zp} = 5) |_;L2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = P&

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} - w A {Zﬂ} - 5) |_;L2 {qb} -0
L'lf meta-level| language T rank(qﬁ) =X {¢} - w M= qﬁ

L object-level language ¢ w 5 CZ

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = P& + ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} - w A {Zﬂ} - 5) |_;L2 {qb} -0
L'lf meta-level| language T rank(qﬁ) =X {¢} - w M= qﬁ

L object-level language ¢ w 5 CZ

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

+ ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

L'LZL meta-level, language ({gb} = N {zp} = 5) |_;L2 {qb})
L'lf meta-level| language T rank(qﬁ) — I {¢} — w i =

L object-level language ¢ w 5

Inference
A collection of (deductive and/or inductive) inference schemata.

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Ps
OV P,V PV ...
TPy APy A PN

q= ¢,

‘BIGGER" 4 W Infinitely long programs that drive infinite super-z machines™.
v Infinitely long programs that drive finite sub-z machines™.
i Finitely long programs that drive infinite super-zr machines™.
(e.g. infinite-time Turing machines)
il Finitely long programs that drive infinite 7 machines™.
(e.g. Turing machines™, register machines™)
“SMALLER” I Finitely long programs that drive finite sub-z machines™.

(e.g. linear-bounded & finite-state automata)

Concerns/Objections ...

Concerns/Objections

Concerns/Objections

® “|s & consistent with Post’s comments regarding |-
systems and a ‘natural law’?”

Concerns/Objections

® “|s & consistent with Post’s comments regarding |-
systems and a ‘natural law’?”

® “What about grammars?”

Concerns/Objections

“Is & consistent with Post’s comments regarding |-
systems and a ‘natural law’?”

“What about grammars?”

“But doesn’t Blum’s Size Theorem/Speedup Theorem
tell us that we already well understood the concept
of the size of a program, and that understanding
runs counter to yours?”

Concerns/Objections

“Is & consistent with Post’s comments regarding |-
systems and a ‘natural law’?”

“What about grammars?”

“But doesn’t Blum’s Size Theorem/Speedup Theorem
tell us that we already well understood the concept
of the size of a program, and that understanding
runs counter to yours?”

® Actually, Godel’s Speedup Theorem is a good
match for the point of view that has been set out
here (since speedup comes from moving to
second-, third-, ..., n-,n+l-order ... logic).

Loggik kan hjelpe deg a leve for alltid.

Church’s Theorem
& its proof ...

Church’s Theorem: [he tntscheidungsproblem s
Turing-unsolvable.

Proof-sketch: \We need to show that the question
D - ¢? is not Turing-decidable. (Here we are working
within the framework of &£;.) To begin, note that
competent users of HyperSlate® know that any Turing

machine m can be formalized in a HyperSlate®
workspace. (Explore! Prove it to yourself in hands-on
fashion!) They will also then know that

() VmneNdJO, ¢ [PF ¢« m:n— halt]

where @ and @ are built in HyperSlate®.

Now, let's assume for contradiction that theoremhood
in first-order logic can be decided by a Turing machine
m,. But this is absurd. Why! Because imagine that
someone now comes to us asking whether some

arbrtrary TM m halts. We can infallibly and
algorithmically supply a correct answer, because we can

formalize m in line with (1) and then employ m, to
oiven us the answer. QED

