
Automated Planning
James Oswald

1

Agenda
This class:

● Review Survey of definitions of intelligence from last class
● Planning Survey and Discussion
● Planning in Natural Language
● STRIPS planning
● Programming in PDDL
● Planning and You, Large Activity

Slides Available at: https://bit.ly/automatedplanning

New Class Discord: https://discord.gg/ywuewJpJJ8

2

https://bit.ly/automatedplanning
https://discord.gg/ywuewJpJJ8

Last Class : Results of the Intelligence Poll

3

Last Class : Results of the Intelligence Poll

4

What Is Planning? Discussion
1) Write your own definition of “Planning”, make it as general as possible.
2) What is a Plan?
3) With your definitions, write a high level pseudocode planning algorithm that

generates a plan from whatever inputs you need. If you don’t code, write out your
steps required for planning in plain english.

Are your notions general enough to….

● Help a robot get from point A to point B on a 2d plane?
● Navigate from this room back to your dorm?
● Navigate from this room to my house (a place you have never seen)?
● Help sherlock holmes catch a criminal from (maybe false) witness testimony?

Email me your answers: oswalj@rpi.edu 5

mailto:oswalj@rpi.edu

Discussion: What underlies our definitions?
● Action?
● Time?

○ Discrete time? Continuous time?
● State?

○ Epistemic / Cognitive States?
○ Partial Observability?

6

Warm Up Exercise : Cabbage, Goat, Wolf
A farmer wants to cross a river and take with him a
wolf, a goat, and a cabbage.

There is a boat that can fit himself plus either the wolf,
the goat, or the cabbage.

If the wolf and the goat are alone on one shore, the
wolf will eat the goat. If the goat and the cabbage are
alone on the shore, the goat will eat the cabbage.

How can the farmer bring the wolf, the goat, and the
cabbage across the river?

Hint: Your plan should be no more than 10 steps, the shortest plan is 7 steps 7

Solution:
Multiple plans, one is:

1. Cross with goat
2. Return with nothing
3. Cross with cabbage
4. Return with the goat
5. Cross with the wolf
6. Return with nothing
7. Take the goat over

8

What About Robots?
You are given a single robot hand that can hold one cube. The robot may pick a
cube up as long as it has nothing on top of it. It may place the cube on the table
(create a new stack) or on top of another cube. Create a plan for the robot that
takes us from the initial state to the goal state.

9

Solution:
1) Pick up B
2) Stack B on A
3) Unstack D from C
4) Place D on the table
5) Unstack B from A
6) Stack B on D
7) Pick up A
8) Stack A on B

10

Formalizing State:

“The world is everything that is the case.The world is the totality of facts, not of
things. The world is determined by the facts, and by these being all the facts.”

-Opening to Wittgenstein’s Tractatus Logico-Philosophicus, 1922

Turnus intous
Predicatesus

11

Exercise: Formalize State in Predicate Logic

1) Come up with a list of “objects” in the
problem (for example cubes)

2) Come up with a list of predicates that
relate these objects.
For example: (on-top-of A B).

3) Write a list of predicates that
formalize the initial state and the goal
state.

If you finish early try to formalize state for
Cabbage, Goat, Wolf.

12

Possible Solutions:
Initial State:

(on-table A) (on-table B)
(on-table C) (on-top-of D C)

Goal State:

(on-table D) (on-table C)
(on-top-of B D) (on-top-of A B)

Or maybe make the table an object:
(on-top-of A T) (on-top-of B T)
(on-top-of C T) (on-top-of D C)

Are all other possible predicates
negated?

We are missing something…

13

We forgot the Robot!
We formalized the start and end states
without taking into account how we represent
intermediate states where we are moving
blocks.

(holding ?block) = The robot is holding the
given block.

(handempty) = The robot hand is empty

Note:
(holding A) and (holding B) is a contradiction,
as is
(holding A) and (handempty) 14

Convenience Predicates
While we make our plan, we often think about WHERE we can put a block.

1) We can place a block we are holding onto the table
2) Or on top of another block that has nothing on top of it.

Case 1 is easy to formalize as (holding B) => (on-table B)

Case 2 is more complex: (holding B1) => (on-top-of B1 B2) but only if “there does
not exist a block on-top of B2” formally: (not (exists x (on-top-of x B2)).

15

Convenience Predicates
We can “cheat” and define a new predicate (clear X) to mean
“there is nothing on top of X”.

As long as we keep it consistent with (not (exists x (on-top-of x B2)) there is no
contradiction in the state.

(clear A)
(clear B)
(clear D)

(clear A)
(clear C)

16

Updated State Exercise
We now have the following predicates:

(handempty) (holding ?B) (clear ?B)
(on-table ?B) (on-top-of ?B1 ?B2)

On the left we show the state after
picking up B from the initial state, write
the state after stacking B on A and
unstacking D from C.

1) Pick up B
2) Stack B on A
3) Unstack D from C

Initial State
(handempty)
(on-table A)
(on-table B)
(on-table C)
(clear A)
(clear B)
(clear D)
(on-top-of D C)

Pickup B
(holding B)
(on-table A)
(on-table C)
(clear A)
(clear D)
(on-top-of D C)

17

Solution
Initial State
(handempty)
(on-table A)
(on-table B)
(on-table C)
(clear A)
(clear B)
(clear D)
(on-top-of D C)

Pickup B
(holding B)
(on-table A)
(on-table C)
(clear A)
(clear D)
(on-top-of D C)

Stack B on A
(handempty)
(on-table A)
(on-table C)
(clear B)
(clear D)
(on-top-of D C)
(on-top-of B A)

Unstack D from C
(holding D)
(on-table A)
(on-table C)
(clear B)
(clear C)
(on-top-of B A)

18

Formalizing “Action”: What moves can we make?
Let's recall our plan

1) Pick up B
2) Stack B on A
3) Unstack D from C
4) Place D on the table
5) Unstack B from A
6) Stack B on D
7) Pick up A
8) Stack A on B

It seems we repeat four distinct actions

1) Picking up a block off the table
2) Placing a block on the table
3) Stacking a block on a clear block
4) Unstacking a block from another block

19

All that changes are the objects the
actions are applied to.

Formalizing Action
Action clearly modifies the state.

But we are missing something…

Can I perform any action in any state?

In this state, can I unstack D?

20

Preconditions: Restrictions on Action

What needs to hold for us to pick
up a block from the table?

When would it not make sense to
pick up a block?

Initial State
(handempty)
(on-table A)
(on-table B)
(on-table C)
(clear A)
(clear B)
(clear D)
(on-top-of D C)

Pickup B
(holding B)
(on-table A)
(on-table C)
(clear A)
(clear D)
(on-top-of D C)

21

Preconditions for Pickup
Preconditions for picking up block ?B
from the table:

(handempty) - The robot’s hand is empty

(clear ?B) - The block has nothing on
top of it

(on-table ?B) - The block is on the table

22

Effects of picking a block up off the table?
Two types of effects:
1) Deletions from the previous state
2) Additions to the new state

Effects of picking up ?B off the table?

Delete (handempty) from state
Delete (on-table ?B) from state
Delete (clear ?B) from state

Add (holding ?B) to state

23

Formalizing Action
We can succinctly write out the
entire schema for picking up a
block ?B in an S-Expression
format.

Note: instead of deleting, we will
write this as adding the negation
of the predicate in the effects.

24

Exercise: Formalize Put Down, Stack, Unstack
Formalize the other 3 actions in this
format.

What are the preconditions and
effects of put down (on table), stack,
and unstack?

If you need help look back at slide
18 to see what changes.

25

Solutions

26

Formalizing Planning: STRIPS
A (lifted) planning domain is defined as:

1) A set of (lifted) predicates that describe the world, W
2) A set of (lifted) actions, each of which is composed of

a) A set of predicates in W required to be true to perform the action
b) A set of predicates in W that are added to the state after the action
c) A set of predicates in W removed from the state after the action

A (lifted) planning problem consists of:

1) A set of objects that instantiate (ground) predicates
2) An initial state, composed of grounded predicates from W
3) A goal state (or set of goal states, described as a partial goal state)

27

Lifted vs Grounded / Predicates & Actions
To plan we need to ground all of our predicates

● (on-top-of ?B1 ?B2) - lifted predicate, we have free variables.

Grounding the predicate consists of filling in all possible blanks giving us a set of grounded predicates.

● (on-top-of A B) (on-top-of B C) (on-top-of C D) (on-top-of A C) (on-top-of A D),

Grounding Actions consists of doing the same thing for the action’s parameters:

● (unstack ?B1 ?B2) is a lifted action with lifted preconditions and effects
● (unstack A B) is a grounded action, we have filled it in with concrete objects.

○ Its preconditions and effects are filled in with the matching grounded predicates

Before we plan, we ground out the domain! Our set of actions is actually the set of grounded actions, and
state is the set of grounded predicates. This is typically an exponential process.

28

Formalizing Application and Plans
Definition of applicable: An action A is said to be applicable in a state S iff the
preconditions of A (pre(A)) hold in S.

Definition of application: “Application” is a function taking an an action A and
state S a new state S’ such that S’ = (S / del(A)) U add(A)

Definition of a Plan: A plan from an initial state S_1 to a goal state G is a
sequence of actions O_1, O_2, … such that each action is applicable to the state
generated by applying the previous action. Formally

(O_n is applicable to S_n) and (forall n: S_(n+1) = Apply(O_n, S_n)).

29

Why Separate Out Domain and Problem?

30

You can have many different problems in the same domain.
Consider the blocksworld states:
● Each has different objects
● Same predicates and actions

Planning in Practice: Programming PDDL
PDDL is a description language to formalize planning domains and problems.

PDDL stands for “Planning Domain Definition Language”

You are already a PDDL Programmer!

You wrote PDDL Actions. Lets go the final mile…

31

PDDL Domains
Consist of

1) Predicates
2) Actions

32

PDDL Problems
Consist of:

1) Objects
2) Initial State
3) Goal State

33

Why PDDL?
Every planner accepts PDDL as
valid input.

If you have PDDL for your problem
you can have the world's most
powerful automated planners come
up with a plan for you.

Let's check it out:
PDDL Editor (planning.domains)

34

https://editor.planning.domains/#read_session=K0ISMaOsbb

Ok but how do I program a Planner myself?
Naive Approach: Breadth first search on the
applicable action tree.

Better Approach: A* search with custom heuristics.

Current Best Approaches: Based on Landmark
Heuristics.

Landmarks are intermediate states that MUST be
reached before the goal.

IE. To leave the room I must pass through the door
=> there is a landmark state S’ where i am passing
through the door. 35

Rest of Class: Pick One Activity, Planning and You
1) Formalize a simple game of your choice in PDDL (Use Planning)

a) https://planning.wiki/ref/pddl - PDDL Reference, Don’t use types or anything
b) Pick something SIMPLE, cabbage goat wolf? Maze search? Transporting boxes?
c) Run it on editor.planning.domains

2) In a programming language of your choice (Become Planning):
a) implement the mathematical formalism as a structure/record/class
b) Instead of having objects, pick a small example & ground everything manually.
c) Implement applicability and application, if you’re brave implement grounding.
d) Write a plan verifier that takes a state, goal, and sequence of actions and returns if

the plan is valid
e) Write a naive breadth or depth first search planning algo, feel free to use online

references.

Regardless of what activity you pick, right before class ends,
email me your pddl domain or code at: oswalj@rpi.edu

36

https://planning.wiki/ref/pddl
http://editor.planning.domains
mailto:oswalj@rpi.edu

