The Propositional Calculus via
Logical Journey of the Zoombinis

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic-based Al
9/12/2024



Logic-and-Al in the news



How to Turn Your Old
iPhone Into an A.l. Phone
(and Skip the Upgrade)

Apple is using Apple Intelligence, a suite of
tools for generating images and text, to upsell
the iPhone 16. But you can get similar features
elsewhere.

p  Listen to this article - 5:38 min Learn more

Sisi Yu

By Brian X. Chen
Brian X. Chapadbedimasslaad.gonsumer




The Propositional
Calculus ...



Knowledge-based
agents

Reasoning

Representation

- CHAPTER [T

LOGICAL AGENTS

In which we design agents that can form representations of a complex world, use a process
of inference to derive new representations about the world, and use these new representa-
tions to deduce what to do.

Humans, it seems, know things; and what they know helps them do things. In Al, knowledge-
based agents use a process of reasoning over an internal representation of knowledge to
decide what actions to take.

The problem-solving agents of Chapters 3 and 4 know things, but only in a very limited,
inflexible sense. They know what actions are available and what the result of performing a
specific action from a specific state will be, but they don’t know general facts. A route-finding
agent doesn’t know that it is impossible for a road to be a negative number of kilometers long.
An 8-puzzle agent doesn’t know that two tiles cannot occupy the same space. The knowledge
they have is very useful for finding a path from the start to a goal, but not for anything else.

The atomic representations used by problem-solving agents are also very limiting. In
a partially observable environment, for example, a problem-solving agent’s only choice for
representing what it knows about the current state is to list all possible concrete states. I could
give a human the goal of driving to a U.S. town with population less than 10,000, but to say
that to a problem-solving agent, I could formally describe the goal only as an explicit set of
the 16,000 or so towns that satisfy the description.

Chapter 6 introduced our first factored representation, whereby states are represented as
assignments of values to variables; this is a step in the right direction, enabling some parts of
the agent to work in a domain-independent way and allowing for more efficient algorithms.
In this chapter, we take this step to its logical conclusion, so to speak—we develop logic as a
general class of representations to support knowledge-based agents. These agents can com-
bine and recombine information to suit myriad purposes. This can be far removed from the
needs of the moment—as when a mathematician proves a theorem or an astronomer calcu-
lates the Earth’s life expectancy. Knowledge-based agents can accept new tasks in the form
of explicitly described goals; they can achieve competence quickly by being told or learning
new knowledge about the environment; and they can adapt to changes in the environment by
updating the relevant knowledge.

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a simple
new environment, the wumpus world, and illustrates the operation of a knowledge-based
agent without going into any technical detail. Then we explain the general principles of logic
in Section 7.3 and the specifics of propositional logic in Section 7.4. Propositional logic is
a factored representation; while less expressive than first-order logic (Chapter 8), which is
the canonical structured representation, propositional logic illustrates all the basic concepts
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Section 7.4  Propositional Logic: A Very Simple Logic

KB is true in the real world? (After all, KB is just “syntax” inside the agent’s head.) This is a
philosophical question about which many, many books have been written. (See Chapter 27.)
A simple answer is that the agent’s sensors create the connection. For example, our wumpus-
world agent has a smell sensor. The agent program creates a suitable sentence whenever there
is a smell. Then, whenever that sentence is in the knowledge base, it is true in the real world.
Thus, the meaning and truth of percept sentences are defined by the processes of sensing and
sentence construction that produce them. What about the rest of the agent’s knowledge, such
as its belief that wumpuses cause smells in adjacent squares? This is not a direct represen-
tation of a single percept, but a general rule—derived, perhaps, from perceptual experience
but not identical to a statement of that experience. General rules like this are produced by
a sentence construction process called learning, which is the subject of Part V. Learning is
fallible. It could be the case that wumpuses cause smells except on February 29 in leap years,
which is when they take their baths. Thus, KB may not be true in the real world, but with
good learning procedures, there is reason for optimism.

7.4 Propositional Logic: A Very Simple Logic

‘We now present propositional logic. We describe its syntax (the structure of sentences) and
its semantics (the way in which the truth of sentences is determined). From these, we derive
a simple, syntactic algorithm for logical inference that implements the semantic notion of
entailment. Everything takes place, of course, in the wumpus world.

7.4.1 Syntax

The syntax of propositional logic defines the allowable sentences. The i t
consist of a single proposition symbol. Each such symbol stands for a proposition that can
be true or false. We use symbols that start with an uppercase letter and may contain other
letters or subscripts, for example: P, Q. R, W) 3 and FacingEast. The names are arbitrary
but are often chosen to have some mnemonic value—we use W) 3 to stand for the proposition
that the wumpus is in [1,3]. (Remember that symbols such as W, 3 are atomic, i.e., W, 1,
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with
fixed meanings: True is the always-true proposition and False is the always-false proposition.
Complex sentences are constructed from simpler sentences, using parentheses and operators
called logical connectives. There are five connectives in common use:

= (not). A sentence such as =W, 3 is called the negation of W, 3. A literal is either an
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).
A (and). A sentence whose main connective is A, such as W; 3 A Py 1, is called a conjunc-
tion; its parts are the conjuncts. (The A looks like an “A” for “And.”)
V (or). A sentence whose main connective is V, such as (Wi 3 A Ps 1)V Wa, is a disjunc-
tion; its parts are disjuncts—in this example, (W3 A P5 1) and Wa .
= (implies). A sentence such as (W3 A Ps;) = ~W,, is called an implication (or con-
ditional). Its premise or antecedent is (W) 3 A P5 1), and its conclusion or consequent
is =W ,. Implications are also known as rules or if-then statements. The implication
symbol is sometimes written in other books as O or —.
<> (if and only if). The sentence W3 < —W, is a biconditional.
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Truth value

Chapter 7 Logical Agents

Sentence AtomicSentence | ComplexSentence

-
AtomicSentence — True| False| P| Q| R| ...
ComplexSentence — ( Sentence)

- Sentence

Sentence N\ Sentence
Sentence V Sentence

Sentence = Sentence

Sentence < Sentence

OPERATOR PRECEDENCE - N\V,=>, &

Figure 7.7 A BNF (Backus—Naur Form) grammar of sentences in propositional logic, along
with operator precedences, from highest to lowest.

Figure 7.7 gives a formal grammar of propositional logic. (BNF notation is explained on
page 1030.) The BNF grammar is augmented with an operator precedence list to remove am-
biguity when multiple operators are used. The “not” operator (—) has the highest precedence,
which means that in the sentence ~A A B the — binds most tightly, giving us the equivalent
of (mA) A B rather than —(A A B). (The notation for ordinary arithmetic is the same: —2+4
is 2, not —6.) When appropriate, we also use parentheses and square brackets to clarify the
intended sentence structure and improve readability.

7.4.2 Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The se-
mantics defines the rules for determining the truth of a sentence with respect to a particular
model. In propositional logic, a model simply sets the truth value—true or false—for every
proposition symbol. For example, if the sentences in the knowledge base make use of the
proposition symbols P; 5, P>, and P; j, then one possible model is

false, P> = false, Py =true} .

With three proposition symbols, there are 2° =8 possible models—exactly those depicted
in Figure 7.5. Notice, however, that the models are purely mathematical objects with no
necessary connection to wumpus worlds. Py > is just a symbol; it might mean “there is a pit
in [1,2]” or “I'm in Paris today and tomorrow.”

The semantics for propositional logic must specify how to compute the truth value of any
sentence, given a model. This is done recursively. All sentences are constructed from atomic
sentences and the five connectives; therefore, we need to specify how to compute the truth
of atomic sentences and how to compute the truth of sentences formed with each of the five
connectives. Atomic sentences are easy:

my = {Pl.z =

* True is true in every model and False is false in every model.
* The truth value of every other proposition symbol must be specified directly in the
model. For example, in the model m; given earlier, P,  is false.
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The Formal Language of the
Propositional Calculus

CHAPTER 2. PROPOSITIONAL CALCULUS 32
Syntax Formula Type Sample Representation
P,P,,P;,Q,Q,,... Atomic Formulas “Larry is lucky.” as L,
) Negation “Gary isn't lucky.” as -Lg
Q1A...AQp Conjunction “Both Larry and Carl are lucky.” asL; AL,
@Q1V...VQp Disjunction “Either Billy is lucky or Alvin is.” as L, v Lg
@ — Y Conditional (Implication) “If Ron is lucky, so is Frank.” as L, —L¢
Q— Y Biconditional (Coimplication)  “Tim is lucky ifand only if Kim is.” as L;«— Ly

Table 2.1: Syntax of the Propositional Calculus. Note that ¢, ¢, and ¢; stand for
arbitrary formulas.



The Formal Language

(presented as formal grammar)

Formula = AtomicFormula

| (Formula Connective Formula)
| = Formula

AtomicFormula = Py | Py | P3| ...

Connective = Al V| = |



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
| = Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V]| = | «



As S-expressions
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Connective = A| V]| = | «
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Connective = A| V]| = | «



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
| = Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V]| = | «

>



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
| = Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V]| = | «

p P bradywillbeback



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
| = Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V| = | <

p P bradywillbeback P26



As S-expressions
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Connective = A| V| = | <

p P bradywillbeback P26



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
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As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)

/ | = Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V| = | <

p P bradywillbeback P26

(not p)



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)

/ | = Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V| = | <

p P bradywillbeback P26

(not p) (nhot P)



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)

/ | = Formula
AtomicFormula = Py | Py | P3| ...
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(not p) (not P) (not P26)



As S-expressions
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As S-expressions

Formula = AtomicFormula
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Formula = AtomicFormula

| (Formula Connective Formula)
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As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
= Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V| = | <
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As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
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Connective = A| V| = | <
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(not p) (not P) (not P26)

(and P Q) (Cor P Q) (1f P Q)



As S-expressions

Formula = AtomicFormula

| (Formula Connective Formula)
= Formula

AtomicFormula = Py | Py | P3| ...

Connective = A| V| = | <
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More Expressive Formal Language:
Pure Predicate Calculus ...






Better Formal Language: Pure Predicate Calculus
(presented via formal grammar)

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Term; ... Termy)

Term = (Function Termy ... Termy)
| Constant
| Variable

Connective = A| V| = |

Predicate = P |P|P...
Constant = c¢1|co|cs ...
Variable = vy | v |vsg ...
Function = filfe|fs --.
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The Infamous “NYS 3”

Given the statements

171C

c—a

—avb Show in HyperSlate® that each of

b — d the first four options can be proved
~(d v e) using the PC provability oracle.

which one of the following statements are provable!?

mle
e

h
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all of the above
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