Automated Planning

James Oswald

From Last Week

Proof of the K axiom

In K

|assume[Iassumel

[O(A=B) ’ { OA

from {72} from {76}

A=B A
10 from {72} 10 from {76}
B

10 from {72,76}

E o8

from {72,76}

= intro

|

O(A = B) = (OA = OB)
oo from {}

B oa=p8)
oo from {6}

(7 Jim3}

o] from (6,8}

OA= 0B
from {6}

|

0O(A = B) = (OA = [B)]
oo[] #om {}

Agenda

This class:

Review Survey of definitions of intelligence
Planning Survey and Discussion

Planning in Natural Language

STRIPS planning

Programming in PDDL

Planning and You Activity

ILBAI Fall 2024 Intelligence Poll

Frequency of Intelligence Categories

classification A
contextual
goal-oriented -
self-awareness -
creativity -
emotional intelligence -
subjective
cognitive function
collaboration -
survival A

pattern recognition -
communication
understanding
decision-making
planning -
problem-solving
reasoning -

learning/adaptation -

0 i 2 3 4 5 6 7 8 9 10 11 12 13
Frequency

ILBAI Fall 2024 Intelligence Poll

Frequency of Intelligence Categories

classification A
contextual
goal-oriented -
self-awareness -
creativity -
emotional intelligence -
subjective
cognitive function
collaboration -
survival A

pattern recognition -
communication
understanding
decision-making
problem-solving
reasoning -

learning/adaptation -

0 i 2 3 4 5 6 7 8 9 10 11 12 13
Frequency

What Is Planning? Discussion

1) Write your own definition of “Planning”, make it as general as possible.

2) Whatis a Plan?
3) With your definitions, write a high level pseudocode planning algorithm that

generates a plan from whatever inputs you need. If you don’t code, write out your
steps required for planning in plain english.

Are your notions general enough to....

Help a robot get from point A to point B on a 2d plane?

Navigate from this room back to your dorm?

Navigate from this room to my house (a place you have never seen)?

Help sherlock holmes catch a criminal from (maybe false) witness testimony?

Email me your answers: oswalj@rpi.edu

mailto:oswalj@rpi.edu

Discussion: What underlies our definitions?

e Action?
e Time?

o Discrete time? Continuous time?
e State?

o Epistemic / Cognitive States?

o Full / Partial Observability?

o Sensing?

Warm Up Exercise : Cabbage, Goat, Wolf

A farmer wants to cross a river and take with him a
wolf, a goat, and a cabbage.

There is a boat that can fit himself plus either the wolf,
the goat, or the cabbage.

If the wolf and the goat are alone on one shore, the
wolf will eat the goat. If the goat and the cabbage are
alone on the shore, the goat will eat the cabbage.

How can the farmer bring the wolf, the goat, and the
cabbage across the river?

Hint: The shortest plan is 7 steps, but your plan may be longer 8

Short Solutions:

Multiple plans, one is:

Cross with goat
Return with nothing
Cross with cabbage
Return with the goat
Cross with the wolf
Return with nothing
Take the goat over

NOoO akoobd-=

What About Robots?

You are given a single robot hand that can hold one cube. The robot may pick a
cube up as long as it has nothing on top of it. It may place the cube on the table
(create a new stack) or on top of another cube. Create a plan for the robot that
takes us from the initial state to the goal state.

D

o w »

A B

[e

Initial state Goal

10

Solution:

1) Pickup B

2) StackBonA

3) Unstack D from C
4) Place D on the table
5) Unstack B from A

6) Stack BonD

7) PickupA

8) Stack AonB

D
A B IS
Initial state

11

Formalizing State:

A
B\ co
1D B
Turnus intous ===
Predicatesus A ‘ B ‘ D
[[
Initial state Goal

“The world is everything that is the case.The world is the totality of facts, not of
things. The world is determined by the facts, and by these being all the facts.”

-Opening to Wittgenstein’s Tractatus Logico-Philosophicus, 1922

12

Exercise: Formalize State in Predicate Logic

1) Come up with a list of “objects” in the
problem (for example cubes)
2) Come up with a list of predicates that

relate these objects. A
For example: (on-top-of A B). D B

3) Write a list of predicates that B ’ C ol B
formalize the initial state and the goal |) []
state. Initial state Goal

If you finish early try to formalize state for
Cabbage, Goat, Wollf.

13

Possible Solutions:

Initial State:

(on-table A) (on-table B)
(on-table C) (on-top-of D C)

Goal State:

(on-table D) (on-table C)
(on-top-of B D) (on-top-of A B)

Or maybe make the table an object:
(on-top-of A T) (on-top-of B T)
(on-top-of C T) (on-top-of D C)

Are all other possible predicates
negated?

Initial state Goal

We are missing something...

14

We forgot the Robot!

We formalized the start and end states
without taking into account how we represent
intermediate states where we are moving
blocks.

(holding ?block) = The robot is holding the
given block.

(handempty) = The robot hand is empty

Note: !
(holding A) and (holding B) is a contradiction !nitial state

as is

(holding A) and (handempty) 15

Predicates

While we make our plan, we often think about WHERE we can put a block.

1) We can place a block we are holding onto the table
2) Or on top of another block that has nothing on top of it.

Case 1 is easy to formalize as (holding B) => (on-table B)

Case 2 is more complex: (holding B1) => (on-top-of B1 B2) but only if “there does
not exist a block on-top of B2” formally: (not (exists x (on-top-of x B2)).

ok
1 I 5 §
L N [lﬁ.

Initial state Goal

16

Precondition Predicates

We can “cheat” and define a new predicate (clear X) to mean
“there is nothing on top of X”.

As long as we keep it consistent with (not (exists x (on-top-of x B2)) there is no
contradiction in the state.

(clear A)
(clear B) ‘ (clear A)
(clear D) | (clear C)

Initial state Goal

17

Updated State Exercise

We now have the following predicates:

(handempty) (holding ?B) (clear ?B)
(on-table ?B) (on-top-of ?B1 ?B2)

On the left we show the state after
picking up B from the initial state, write
the state after stacking B on A and
unstacking D from C.

1) Pickup B
2) StackBonA
3) Unstack D from C

Initial State Pickup B
(handempty) @ (holding B)

(on-table A)—— (on-table A)
(on-table B)@ _(on-table C)
(on-table C) (clear A)
(
(

\\

(clear A) clear D)
(clearB) ® on-top-of D C)
(clear D) /
(on-top-of D C)

X

Initial state Initial state
18

>

D

%

Solution

Initial State Pickup B Stack B on A Unstack D from C
(handempty) @ (holding B)@® (handempty) @ (holding D)
(on-table A)—— (on-table A) (on-table A) (on-table A)
(on-table B)@ _(on-table C) (on-table C) (on-table C)
(on-table C /(clearA (clear B) (clear B)

(clear A) / (clear D) (clear D)) (clear C)

(clear B) ©® (on-top-of D C) —(on-top-of DC)@® _ (on-top-of B A)
(clear D) (on-top-of B A)/

(on-top-of D C)

P T L LN

Initial state

Formalizing Action: What moves can we make?

Let's recall our plan

1) Pickup B
2) Stack BonA
3) Unstack D from C
4) Place D on the table
5) Unstack B from A
6) Stack BonD
7) PickupA
8) StackAonB

It seems we repeat four distinct actions

1) Picking up a block off the table

2) Placing a block on the table

3) Stacking a block on a clear block

4) Unstacking a block from another block

All that changes are the objects the
actions are applied to.

20

Formalizing Action

Action clearly modifies the state.
But we are missing something...

Can | perform any action in any state?

In this state, can | unstack D?

Initial state

21

Preconditions: Restrictions on Action
Initial State Pickup B

What needs to hold for us to pick (handempty) @ (holding B)
up a block from the table? (on-table A)— (on-table A)
(on-table B) on-table C)

\Q

(
(
(
(clear A)
(
(

(on-table C)

When would it not make sense to (clear A) / clear D)

pick up a block? (clear B) y on-top-of D C)
(clear D) /

Initial state Initial state

22

Preconditions for Pickup
Preconditions for picking up block ?B
from the table:

(handempty) - The robot’s hand is empty

(clear ?B) - The block has nothing on
top of it

(on-table ?B) - The block is on the table

Initial State Pickup B

(handempty) @ (holding B)
(on-table A)—— (on-table A)
(on-table B)@® _ (on-table C)
(on-table C /(clear A)

(clear A) / (clear D)
(clearB)® (on-top-of D C)
(clear D)

(on-top-of D C)

AB.DM A .Dh\

Initial state Initial state

23

Effects of picking a block up off the table?

Two types of effects:
1) Deletions from the previous state Initial State Pickup B

" (handempty) @ (holding B)
2) Additions to the new state R el oy s o
(on-table B)@® _(on-table C)
Effects of picking up ?B off the table? (on-table C) (clear A)
P 9 up (clear A)/(clear D)
Delete (handempty) from state Ec:earg y(on Rl
cliear
Delete (on-table ?B) from state (on-top-of D C) /

Delete (clear ?B) from state }_\“\)\\
B B ‘é S A @D)

Add (holding ?B) to state it stte

24

Formalizing Action

We can succinctly write out the (:action pickup
:parameters (?B)

entire schema for picking up a . orecondition (and
block ?B in an S-Expression (clear ?B)
format (on-table ?B)

(hand-empty)

)
:effect (and

Note: instead of deleting, we will E:gid%ge:ﬁ)?s))
write this as adding the negation (not (on-table ?B))

of the predicate in the effects. (not (hand-empty))

25

Exercise: Formalize Put Down, Stack, Unstack

Formalize the other 3 actions in this (:action pickup
” " :parameters (?B)
ormat. :precondition (and

(clear ?B)
(on-table ?B)

What are the preconditions and (hand-empty)

effects of put down (on table), stack,)
and unstack? :effect (and
(holding ?B)
(not (clear ?B))
If you need help look back at slide (not (on-table ?B))
18 to see what changes.) (not (hand-empty))

26

Solutions

(:action putdown
:parameters (?2B)
:precondition (and
(holding ?’B)

)

:effect (and
(not (holding ?B))
(hand-empty)
(clear ?B)
(on-table ’B)

(:action stack
:parameters (2A 2B)
:precondition (and
(clear ?B)
(holding ?2A)

)

:effect (and
(not (holding ?A))
(hand-empty)
(clear 2A)
(on-top-of ?A ?B)

(:action unstack
:parameters (2?A 2B)
:precondition (and

(on-top-of A ?B)
(clear 2A)
(hand-empty)
)
:effect (and
(holding 2A)
(not (hand-empty))
(not (on-top-of 2A ?B))
(not (clear 2A))

27

Formalizing Planning: STRIPS

A (lifted) planning domain is defined as:

1) Aset of (lifted) predicates that describe the world, W

2) Aset of (lifted) actions, each of which is composed of

a) Aset of predicates in W required to be true to perform the action
b) A set of predicates in W that are added to the state after the action
c) Aset of predicates in W removed from the state after the action

A (lifted) planning problem consists of:

1) A set of objects that instantiate (ground) predicates
2) Aninitial state, composed of grounded predicates from W
3) Agoal state (or set of goal states, described as a partial goal state)

28

Lifted vs Grounded / Predicates & Actions

To plan we need to ground all of our predicates
e (on-top-of ?B1 ?B2) - lifted predicate, we have free variables.

Grounding the predicate consists of filling in all possible blanks giving us a set of grounded predicates.
e (on-top-of A B) (on-top-of B C) (on-top-of C D) (on-top-of A C) (on-top-of AD),

Grounding Actions consists of doing the same thing for the action’s parameters:

e (unstack ?B1 ?B2) is a lifted action with lifted preconditions and effects

® (unstack A B) is a grounded action, we have filled it in with concrete objects.
o Its preconditions and effects are filled in with the matching grounded predicates

Before we plan, we ground out the domain! Our set of actions is actually the set of grounded actions, and
state is the set of grounded predicates. This is typically an exponential process.
29

Formalizing Application and Plans
Definition of applicable: An action A is said to be applicable in a state S iff the
preconditions of A (pre(A)) hold in S.

Definition of application: “Application” is a function taking an an action A and
state S a new state S’ such that S’ = (S / del(A)) U add(A)

Definition of a Plan: A plan from an initial state S_1 to a goal state G is a
sequence of actions O_1, O_2, ... such that each action is applicable to the state
generated by applying the previous action. Formally

(O_nis applicable to S_n) and (forall n: S_(n+1) = Apply(O_n, S_n)).

30

Why Separate Out Domain and Problem?

You can have many different problems in the same domain.
Consider the blocksworld states:
e Each has different objects
e Same predicates and actions

Probl

bl | b2

b2

bl

bl

b2

b3

Prob2

b3
b2
bl

b4 Prob3

b3

02| |b2 || ba]
bl| |b1l| b3

31

Planning in Practice: Programming PDDL

PDDL is a description language to formalize planning domains and problems.

PDDL stands for “Planning Domain Definition Language”

You are already a PDDL Programmer! ‘

You wrote PDDL Actions. Lets go the final mile... '

32

PDDL Domains

Consist of

1) Predicates
2) Actions

(define (domain ILBAI-BLOCKS)

(:predicates
(hand-empty)
(clear ?B)
(on-table ?B)
(holding 2B)
(on-top-of A ?2B)

)

//our actions here

33

PDDL Problems

Consist of:

1) Objects
2) Initial State
3) Goal State

(define (problem ex1)

)|

(:domain ILBAI-BLOCKS)
(:objects A B C D)
(:init
(hand-empty)
(on-table A)
(on-table B)
(on-table C)
(clear A)
(clear B)
(clear D)
(on-top-of D C)
)

(:goal (and
(on-table D)
(on-table ()
(on-top-of B D)
(on-top-of A B)

))

34

Why PDDL?

Planners accept PDDL as valid
input.

If you have PDDL for your problem
you can have the world's most
powerful automated planners come
up with a plan for you.

Let's check it out;
PDDL Editor (planning.domains)

Found Plan (output)
(unStaCk d C) (:action unstack
:parameters (d c)
(putdown d) :precondition
(and
ikinh (on-top-of d c)
pickipR) (clear d)
hand-empt
(stack bd)) (ae-amy)
:effect
(pickup a) (and
(holding d)
(stack a b) {nat

(hand-empty)
)
(not
(on-top-of d c)
)
(not
(clear d)
)
)
)

35

https://editor.planning.domains/#read_session=K0ISMaOsbb

Ok but how do | program a Planner myself?

Naive Approach: Breadth first search on the ——= .

applicable action tree. ichan

Better Approach: A* search with custom heuristics. _: - l_]f_l

Current Best Approaches: Based on Landmark _""“""

Heuristics. o :15 ‘

Landmarks are intermediate states that MUST be ;W j =)
mm i

reached before the goal. ‘ o

IE. To leave the room | must pass through the door
=> there is a landmark state S’ where i am passing |
through the door. 36

Rest of Class: Pick One Activity, Planning and You

1) Formalize a simple game of your choice in PDDL (Use Planning)
a) https://planning.wiki/ref/pddl - PDDL Reference, Don’t use types or anything
b) Pick something SIMPLE, cabbage goat wolf? Maze search? Transporting boxes?
c) Run it on editor.planning.domains

2) In a programming language of your choice (Become Planning):

implement the mathematical formalism as a structure/record/class

a)

b) Instead of having objects, pick a small example & ground everything manually.

c) Implement applicability and application, if you're brave implement grounding.

d) Write a plan verifier that takes a state, goal, and sequence of actions and returns if

the plan is valid
e) Write a naive breadth or depth first search planning algo, feel free to use online

references.

Regardless of what activity you pick, right before class ends,
email me your pddl domain or code at: oswalj@rpi.edu

37

https://planning.wiki/ref/pddl
http://editor.planning.domains
mailto:oswalj@rpi.edu

