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Does &5 = TOL work in HyperSlate? Partially?
Not at all! What's possible and what's not?
What exactly is needed inference-rule-wise for
a full natural-deduction system for TOL. Can a
chatbot like GPI-5 preview etc. handle TOL
reasoning challenges expressed in English?
What specimens do you have for your answer?
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Does Reinforcement Learning Really Incentivize Reasoning PO
Capacity in LLMs Beyond the Base Model?

Yang Yue, Zhiqgi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, Gao Huang
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Keywords: reinforcement learning with verifiable reward, LLM reasoning
TL;DR: We systematically examine the current state of RLVR and surprisingly find that it does not elicit fundamentally new reasoning patterns—revealing a gap between the potential of RL and the actual
impact of current RLVR methods.

Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly in mathematics

and programming tasks. It is widely believed that, similar to how traditional RL helps agents to explore and learn new strategies, RLVR enables LLMs to continuously self-improve, thus acquiring novel
reasoning abilities that exceed the capacity of the corresponding base models. In this study, we take a critical look at \textit{the current state of RLVR} by systematically probing the reasoning capability
boundaries of RLVR-trained LLMs across diverse model families, RL algorithms, and math/coding/visual reasoning benchmarks, using pass@\textit{k} at large \textit{k} values as the evaluation metric.
While RLVR improves sampling efficiency towards the correct path, we surprisingly find that current training does \emph{not} elicit fundamentally new reasoning patterns. We observe that while RLVR-
trained models outperform their base models at smaller values of k (\eg, k=1), base models achieve higher pass@k score when k is large. Moreover, we observe that the reasoning capability boundary of
LLMs often narrows as RLVR training progresses. Further coverage and perplexity analysis shows that the reasoning paths generated by RLVR models are already included in the base models' sampling
distribution, suggesting that their reasoning abilities originate from and are \textit{bounded} by the base model. From this perspective, treating the base model as an upper bound, our quantitative
analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in fully leveraging the potential of the base model. In contrast, we find that distillation can introduce new
reasoning patterns from the teacher and genuinely expand the model’s reasoning capabilities. Taken together, our findings suggest that current RLVR methods have not fully realized the potential of RL
to elicit genuinely novel reasoning abilities in LLMs. This underscores the need for improved RL paradigms—such as continual scaling and multi-turn agent-environment interaction—to unlock this

potential.
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ARTICLE INFO ABSTRACT
Achmsmry' Uniquely human abilities may arise from special-purpose brain circuitry, or from concerted
Received 8 November 2015 general capacity increases due to our outsized brains. We forward a novel hypothesis of the

Received in revised form 21 December 2015
Accepted 16 March 2016
Available online 21 March 2016

relation between computational capacity and brain size, linking mathematical formalisms
of grammars with the allometric increases in cortical-subcortical ratios that arise in large
brains. In sum, i) thalamocortical loops compute formal grammars; ii) successive cortical

Keywords: regions describe grammar rewrite rules of increasing size; iii) cortical-subcortical ratios
Brain allometry determine the quantity of stacks in single-stack pushdown grammars; iv) quantitative
Grammars increase of stacks yields grammars with qualitatively increased computational power. We
High-order pushdown automata arrive at the specific conjecture that human brain capacity is equivalent to that of indexed
Thalamocortical circuits grammars - far short of full Turing-computable (recursively enumerable) systems. The

work provides a candidate explanatory account of a range of existing human and animal
data, addressing longstanding questions of how repeated similar brain algorithms can be
successfully applied to apparently dissimilar computational tasks (e.g., perceptual versus
cognitive, phonological versus syntactic); and how quantitative increases to brains can
confer qualitative changes to their computational repertoire.

© 2016 Published by Elsevier B.V.

1. Brain growth shows surprisingly few signs of evolutionary pressure

Different animals exhibit different mental and behavioral abilities, but it is not known which abilities arise from special-
izations in the brain, i.e,, circuitry to specifically support or enable particular capacities. Evolutionary constraints on brain
construction severely narrow the search for candidate specializations. Although mammalian brain sizes span four orders of
magnitude [1], the range of structural variation differentiating those brains is extraordinarily limited.

An animal’s brain size can be roughly calculated from its body size 2], but much more telling is the relationship between
the sizes of brains and of their constituent parts: the size of almost every component brain circuit can be computed with
remarkable accuracy just from the overall size of that brain [1,3-5], and thus the ratios among brain parts (e.g. cortical to
subcortical size ratios) increase in a strictly predictable allometric fashion as overall brain size increases [6,7] (Fig. 1).

These allometric regularities obtain even at the level of individual brain structures (e.g., hippocampus, basal ganglia,
cortical areas). There are a few specific exceptions to the well-documented allometric rule (such as the primate olfactory
system [8]), clearly demonstrating that at least some brain structure sizes can be differentially regulated in evolution, yet
despite this capability, it is extremely rare for telencephalic structures ever to diverge from the allometric rule [4,6,79].
Area 10, the frontal pole, is the most disproportionately expanded structure in the human brain, and has sometimes been
argued to be selected for differential expansion, yet the evidence has strongly indicated that area 10 (and the rest of anterior
cortex) are nonetheless precisely the size that is predicted allometrically [6,7,10,11].

* Corresponding author.
E-mail address: Richard.Gran,

@gmail.com (R. Granger).
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Abstract

We now know both that hypercomputation (or super-recursive computation) is mathemati-
cally well-understood, and that it provides a theory that according to some accounts for some
real-life computation (e.g., operating systems that, unlike Turing machines, never simply output
an answer and halt) better than the standard theory of computation at and below the “Turing
Limit.” But one of the things we do not know is whether the human mind hypercomputes, or
merely computes—this despite informal arguments from Godel, Lucas, Penrose and others for
the view that, in light of incompleteness theorems, the human mind has powers exceeding those
of TMs and their equivalents. All these arguments fail; their fatal flaws have been repeatedly
exposed in the literature. However, we give herein a novel, formal modal argument showing that
since it’s mathematically possible that human minds are hypercomputers, such minds are in fact
hypercomputers. We take considerable pains to anticipate and rebut objections to this argument.
(© 2003 Elsevier B.V. All rights reserved.

Keywords: Computationalism; Hypercomputation; Incompleteness theorems

1. Introduction

Four decades ago, Lucas [50] expressed supreme confidence that Godel’s first in-
completeness theorem (= Godel I) entails the falsity of computationalism, the view
that human persons are computing machines (e.g., Turing machines). Put barbarically,
Lucas’ basic idea is that minds are more powerful than Turing machines. Today, given
our understanding of hypercomputation in theoretical computer science, and given the
absolute consensus reigning in cognitive science that the human mind is, at least in
large part, some sort of information-processing device, we know enough to infer that
if Lucas is right, the mind is a hypercomputer. However, Lucas’ arguments have
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9: The Future of Logic
Machines

he ease with which formal logics can be trans-
lated into electric circuits leaves little doubt that we are entering a
period in the history of logic that will witness a steady development
in the construction of more powerful and versatile electrically oper-
ated machines. This does not mean that the nonelectrical logic
device has reached any state of near perfection. The few that have
been constructed are obviously crude models, and there are prob-
ably all kinds of ways in which compact little logic machines, oper-
ating along mechanical lines, can be designed. But the power of
such devices is so limited that attempts to invent better ones will
likely be rare and undertaken only in a recreational spirit. The most
exciting, as well as the most potentially useful area of exploration
will undoubtedly be in the electrical and electronic direction.
Electrical syllogism machines are so easily constructed and their
uselessness so apparent that it is unlikely much thought will be given
to improving them. The few that have been built are almost devoid
of theoretical interest because their circuits bear no formal analogy
to the logical structure of the syllogism. For classroom purposes it
should be possible, however, to construct a class logic machine that
would have such formal analogy, and it is surprising that this has
not, to my knowledge, been attempted. Such a machine would not
be confined to the traditional S, M, P labels, with their limited prem-
ises and conclusions. It would take care of many more variables,
140
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and these could be applied to the terms of any number of class-
inclusion statements. When such statements were fed to the machine
it would show at once all the valid inferences that could be drawn.
Such a machine would have a network structure analogous to the
topological properties of the Venn circles. There is of course such
an analogy in the network of propositional calculus machines, since
the underlying structure of class and propositional logic is the same;
but the truth-value machines are not designed primarily for class
logic and a great deal of awkward translation has to take place
before such machines can handle even simple syllogisms with par-
ticular statements. It should not be difficult to construct electrical
machines designed specifically for class logic, and perhaps capable
(like the Stanhope demonstrator) of handling statements involving
“most,” as well as statements with numerical quantifiers.

In the field of the propositional calculus, a great deal of experi-
mental work is now going on. We can reasonably expect that
simpler, more efficient, more powerful machines of this type will be
devised in the near future. Will such machines have any practical
uses? D. G. Prinz and J. B. Smith (in their chapter on logic ma-
chines in the anthology Faster Than Thought, edited by B. V. Bow-
den, 1953) suggest the following areas in which logic computers
may some day be put to use: checking the consistency of legal
documents, rule books of various sorts, and political policy state-
ments; checking signal operations at railway junctions; preparing
complex time schedules for university classes, plane landings at an
airport, and so on. The rapidly growing field of “operations re-
search™ is riddled with problems for which logic machines may
prove helpful. Edmund C. Berkeley, in his description of the Kalin-
Burkhart machine (Giant Brains, 1949, Chapter 9), gives a com-
plicated problem involving insurance coverage and shows how
quickly it can be solved on the machine. Although none of these
areas has so far grown complex enough to justify the frequent use
of logic calculators, it may be that the employment of such devices
will come with increasing complexity and may even be a factor in
making such an increase possible.

It is amusing to speculate on what might happen to speculative
philosophy if progress in semantics should some day permit the
symbolic codification of systems of metaphysics. Fed with the re-
quired axioms and factual data, a machine might then examine the
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Abstract

I eritcally review Raymond Tumer's Computational Artfacts — Towards a Philos-
ophy of Computer Science by placing beside his position a rather different one,
according to which computer science s a branch of, and is therefore subsumed by,
immaterial formal logic.
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