

# **Could AI Ever Match Gödelian Greatness?**

**(Essays on Artificial vs. Personal Intelligence)**

**Selmer Bringsjord**

Intro to Formal Logic (& AI) (IFLAI1)

12/11/25

ver 1211251500NY

[Selmer.Bringjord@gmail.com](mailto:Selmer.Bringjord@gmail.com)



# Could AI Ever Match Gödelian Greatness?

(Essays on Artificial vs. Personal Intelligence)



No.



Yes.

**Selmer Bringsjord**

Intro to Formal Logic (& AI) (IFLAII)

12/11/25

ver 1211251210NY

[Selmer.Bringjord@gmail.com](mailto:Selmer.Bringjord@gmail.com)



# Could AI Ever Match Gödelian Greatness?

(Essays on Artificial vs. Personal Intelligence)



No.



Yes.

**Selmer Bringsjord**

Intro to Formal Logic (& AI) (IFLAII)

12/11/25

ver 1211251210NY

[Selmer.Bringjord@gmail.com](mailto:Selmer.Bringjord@gmail.com)



<https://cse.buffalo.edu/~rapaport/Papers/aidebate.pdf>

## Will AI Succeed? The “Yes” Position

William J. Rapaport

Department of Computer Science and Engineering,  
Department of Philosophy, Department of Linguistics,  
and Center for Cognitive Science  
University at Buffalo, The State University of New York,  
Buffalo, NY 14260-2500

rapaport@buffalo.edu  
<http://www.cse.buffalo.edu/~rapaport/>

July 30, 2025

### Abstract

This is a draft of the “Yes” side of a proposed debate book, *Will AI Succeed?*. The “No” position will be taken by Selmer Bringsjord, and will be followed by rejoinders on each side.

AI should be considered as the branch of computer science that investigates whether, and to what extent, cognition is computable. Computability is a logical or mathematical notion. So, the only way to prove that something—including (some aspect of) cognition—is *not* computable is via a logical or mathematical argument. Because no such argument has met with general acceptance (in the way that other proofs of non-computability—such as the Halting Problem—have been generally accepted), there is no logical reason to think that AI *won’t* eventually match human intelligence. Along the way, I discuss the Turing Test as a measure of AI’s success at showing the computability of various aspects of cognition, and I consider the potential roadblocks set by consciousness, qualia, and mathematical intuition.

**Department of Computer Science and Engineering,  
Department of Philosophy, Department of Linguistics,  
and Center for Cognitive Science  
University at Buffalo, The State University of New York,  
Buffalo, NY 14260-2500**

rapaport@buffalo.edu

<http://www.cse.buffalo.edu/~rapaport/>

July 30, 2025

### **Abstract**

This is a draft of the “Yes” side of a proposed debate book, *Will AI Succeed?*. The “No” position will be taken by Selmer Bringsjord, and will be followed by rejoinders on each side.

AI should be considered as the branch of computer science that investigates whether, and to what extent, cognition is computable. Computability is a logical or mathematical notion. So, the only way to prove that something—including (some aspect of) cognition—is *not* computable is via a logical or mathematical argument. Because no such argument has met with general acceptance (in the way that other proofs of non-computability—such as the Halting Problem—have been generally accepted), there is no logical reason to think that AI *won’t* eventually match human intelligence. Along the way, I discuss the Turing Test as a measure of AI’s success at showing the computability of various aspects of cognition, and I consider the potential roadblocks set by consciousness, qualia, and mathematical intuition.

**Department of Computer Science and Engineering,  
Department of Philosophy, Department of Linguistics,  
and Center for Cognitive Science  
University at Buffalo, The State University of New York,  
Buffalo, NY 14260-2500**

rapaport@buffalo.edu

<http://www.cse.buffalo.edu/~rapaport/>

July 30, 2025

### **Abstract**

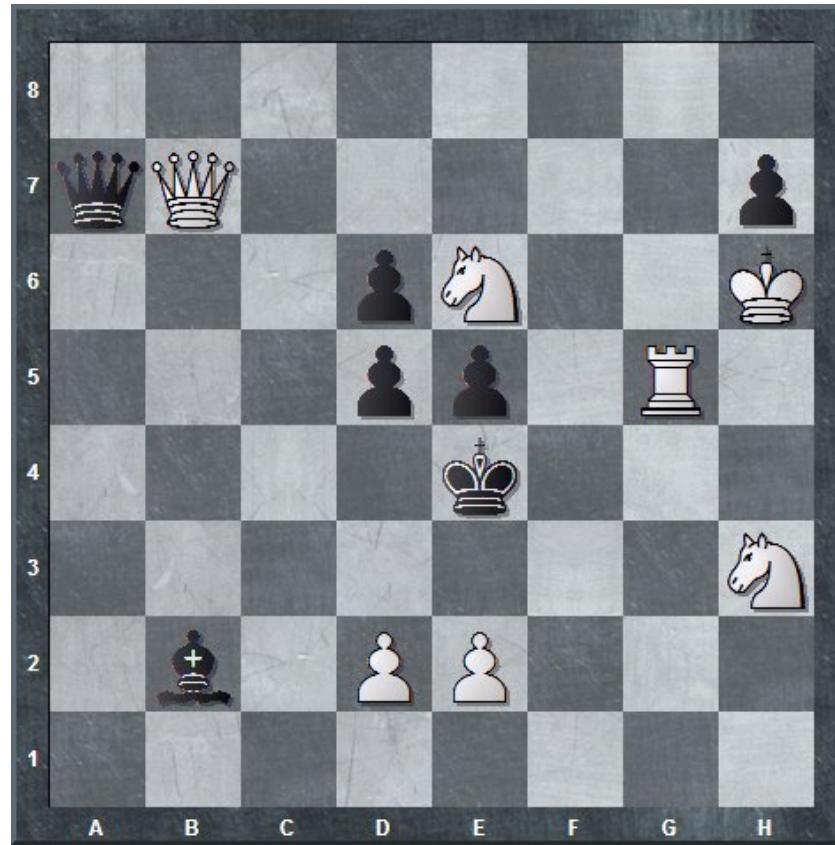
This is a draft of the “Yes” side of a proposed debate book, *Will AI Succeed?*. The “No” position will be taken by Selmer Bringsjord, and will be followed by rejoinders on each side.

AI should be considered as the branch of computer science that investigates whether, and to what extent, cognition is computable. Computability is a logical or mathematical notion. So, the only way to prove that something—including (some aspect of) cognition—is *not* computable is via a logical or mathematical argument. Because no such argument has met with general acceptance (in the way that other proofs of non-computability—such as the Halting Problem—have been generally accepted), there is no logical reason to think that AI *won’t* eventually match human intelligence. Along the way, I discuss the Turing Test as a measure of AI’s success at showing the computability of various aspects of cognition, and I consider the potential roadblocks set by consciousness, qualia, and mathematical intuition.

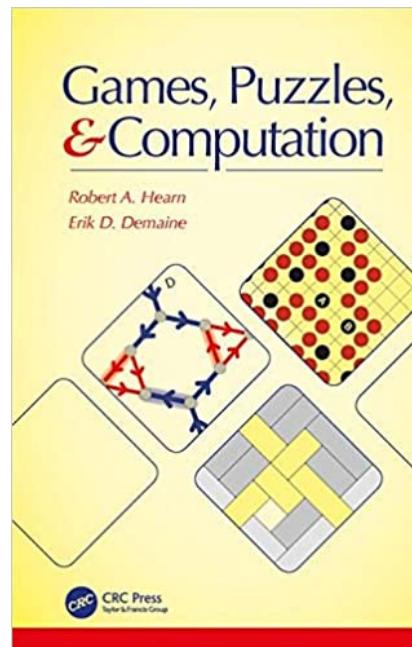
# Gödel's Greatness & Games

...

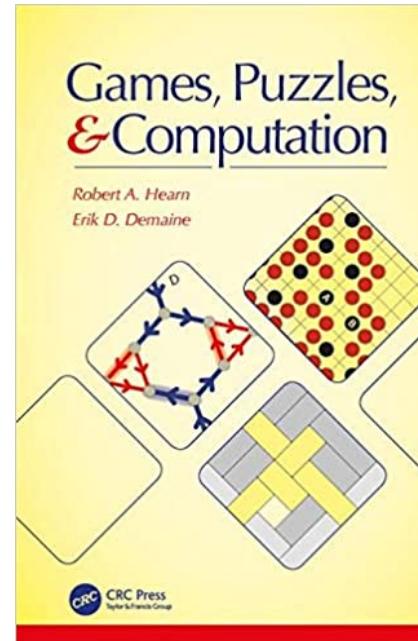
# Mate in 2 Problem



# Mate in 2 Problem



# Mate in 2 Problem



## The Constraint-Logic Formalism

The general model of games we will develop is based on the idea of a *constraint graph*; by adding rules defining legal moves on such graphs we get *constraint logic*. In later chapters the graphs and the rules will be specialized to produce games with different numbers of players: zero, one, two, etc. A game played on a constraint graph is a computation of a sort, and simultaneously serves as a useful problem to reduce to other games to show their hardness.

In the game complexity literature, the standard problem used to show games hard is some kind of game played with a Boolean formula. The Satisfiability problem (SAT), for example, can be interpreted as a puzzle the player must existentially make a series of variable selections, so that the formula is true. The corresponding model of computation is nondeterminism, and the natural complexity class is NP. Adding alternating existential and universal quantifiers creates the Quantified Boolean Formulas problem (QBF), which has a natural interpretation as a two-player game [158].

The general model of games we will develop is based on the idea of a *constraint graph*; by adding rules defining legal moves on such graphs we get *constraint logic*. In later chapters the graphs and the rules will be specialized to produce games with different numbers of players: zero, one, two, etc. A game played on a constraint graph is a computation of a sort, and simultaneously serves as a useful problem to reduce to other games to show their hardness.

In the game complexity literature, the standard problem used to show games hard is some kind of game played with a Boolean formula. The Satisfiability problem (SAT), for example, can be interpreted as a puzzle: the player must existentially make a series of variable selections, so that the formula is true. The corresponding model of computation is nondeterminism, and the natural complexity class is NP. Adding alternating existential and universal quantifiers creates the Quantified Boolean Formulas problem (QBF), which has a natural interpretation as a two-player game [158,

m

les,  
on



# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power

Mere Calculative Cognitive Power

***Entscheidungsproblem***

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power



Gödel

Mere Calculative Cognitive Power

***Entscheidungsproblem***

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power



Gödel



Turing

**Entscheidungsproblem**

Mere Calculative Cognitive Power

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power



Gödel



Turing

**Entscheidungsproblem**

Mere Calculative Cognitive Power

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power



Gödel



**Entscheidungsproblem**

Mere Calculative Cognitive Power

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power

Podcast: The Turing Test is Dead.  
Long Live the Lovelace Test.



Gödel



Mere Calculative Cognitive Power

**Entscheidungsproblem**

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

Super-Serious Human Cognitive Power

Serious Human Cognitive Power



Gödel



**Entscheidungsproblem**

Mere Calculative Cognitive Power

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

Serious Human Cognitive Power



Gödel



Mere Calculative Cognitive Power

**Entscheidungsproblem**

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



***Entscheidungsproblem***

Mere Calculative Cognitive Power

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



### Polynomial Hierarchy

***Entscheidungsproblem***

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



### Polynomial Hierarchy

***Entscheidungsproblem***

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



$\vdots$   
 $\Pi_2$   
 $\Sigma_2$   
 $\Pi_1$   
 $\Sigma_1$   
 $\Sigma_0$

***Entscheidungsproblem***

### Polynomial Hierarchy

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



Go:AlphaGo



$\vdots$   
 $\Pi_2$   
 $\Sigma_2$   
 $\Pi_1$   
 $\Sigma_1$   
 $\Sigma_0$

**Entscheidungsproblem**

### Polynomial Hierarchy

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



*Jeopardy!:*



Go:AlphaGo

$\vdots$   
 $\Pi_2$   
 $\Sigma_2$   
 $\Pi_1$   
 $\Sigma_1$   
 $\Sigma_0$

**Entscheidungsproblem**

### Polynomial Hierarchy

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



*Jeopardy!*:

Chess: Deep Blue



Go: AlphaGo



Go: AlphaGo

$\vdots$   
 $\Pi_2$   
 $\Sigma_2$   
 $\Pi_1$   
 $\Sigma_1$   
 $\Sigma_0$

**Entscheidungsproblem**

### Polynomial Hierarchy

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy



Gödel



*Jeopardy!*:

Checkers: Chinook



Chess: Deep Blue



Go: AlphaGo



$\vdots$   
 $\Pi_2$   
 $\Sigma_2$   
 $\Pi_1$   
 $\Sigma_1$   
 $\Sigma_0$

**Entscheidungsproblem**

### Polynomial Hierarchy

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

# Logico-Mathematical Landscape that Has Gödel Turning in His Grave

## Analytical Hierarchy

### Arithmetical Hierarchy

$\vdots$   
 $\Pi_2$   
 $\Sigma_2$   
 $\Pi_1$   
 $\Sigma_1$   
 $\Sigma_0$

### Polynomial Hierarchy

*Jeopardy!:*

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

Chess: Deep Blue  
Checkers: Chinook  
Go: AlphaGo

**Entscheidungsproblem**



1994

*Checkers: Tinsley vs. Chinook*



Name: Marion Tinsley  
Profession: Texas mathematician  
Hobby: Checkers  
Record: Over 40 years  
Isaac only 2 games  
of checkers  
World champion for over 40  
years

*Mr. Tinsley suffered his 4th and 5th losses against Chinook*

1994

### Checkers: Tinsley vs. Chinook



Name: Marion Tinsley  
Profession: Toxic mathematician  
Hobby: Checkers  
Record: Over 40 years  
Is this only 2 games  
of checkers  
World champion for over 40  
years

Mr. Tinsley suffered his 4th and 5th losses against Chinook.

1997



1994

### Checkers: Tinsley vs. Chinook



Name: Marvin Tinsley  
Profession: Teaching mathematics  
Hobby: Checkers  
Record: Over 40 years  
Is this only 2 games  
of checkers  
World champion for over 40  
years

Mr. Tinsley suffered his 4th and 5th losses against Chinook.

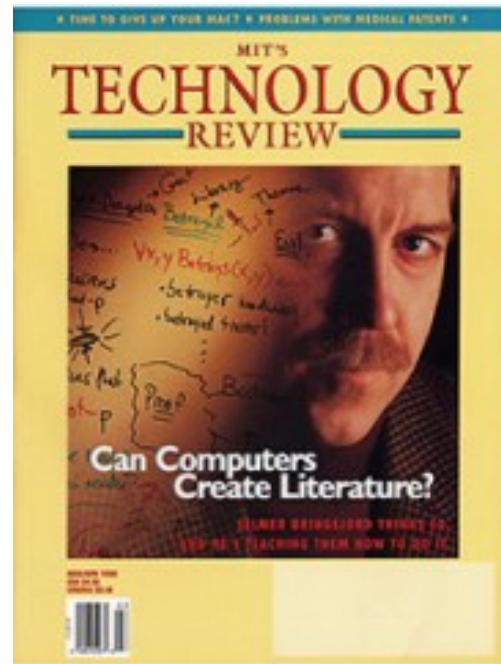
1997



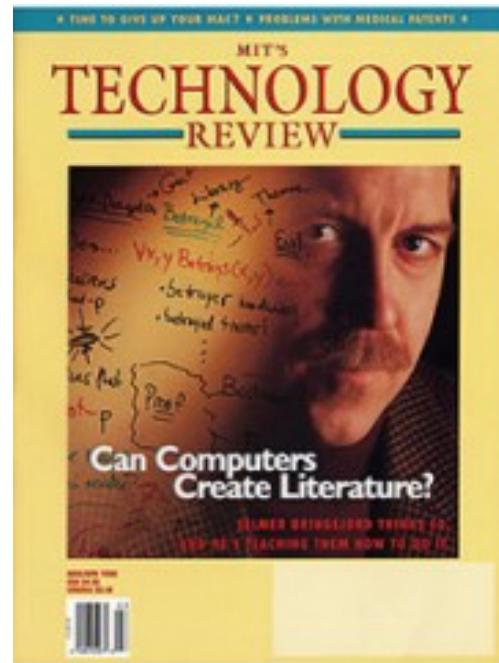
2011



1998

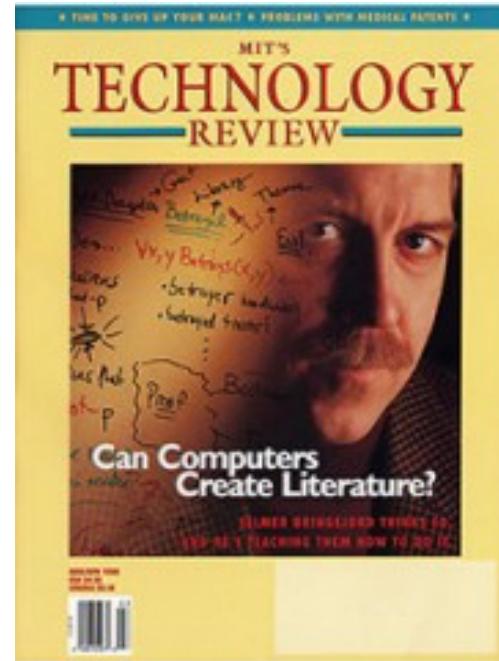


# “Chess is Too Easy”



1998

# “Chess is Too Easy”



1998

Some of Gödel's great work is at the level of chess.

But to *fully* “gamify” Gödel,  
we need a harder game! ...

# Rengo Kriegspiel

usgo.org

Plated News SUNY System ...ess - Logon Ultra Hardwar...are Products Screen Door L...y Von Morris Screen Door ...d Von Morris Apple Amazon eBay Yahoo! .Mac



**U.S. Go Congress | Crosstabs | Free E-Journal | Upcoming Events | Ratings | Kids & Teens | Latest Go News**

**AGA HOMEPAGE**  
+WHAT Is Go?  
**RATINGS**  
+ MEMBERSHIP AND CHAPTERS  
**AGA CHAPTER EMAIL LIST**  
PROFESSIONALS  
+PLAY Go  
+TOURNAMENTS  
+LEARN MORE  
+TEACH OTHERS  
+OUTREACH  
+KIDS & TEENS  
AMERICAN GO FOUNDATION  
LATEST Go NEWS  
+ABOUT THE AGA  
DONATE TO THE AGA  
AGA Go DATABASE  
US Go CONGRESS  
n Go Foundation ARCHIVE  
+ADMINISTRATORS ONLY

**American Go E-Journal**

## US Go Congress Goes a Little Crazy

Wednesday August 13, 2014



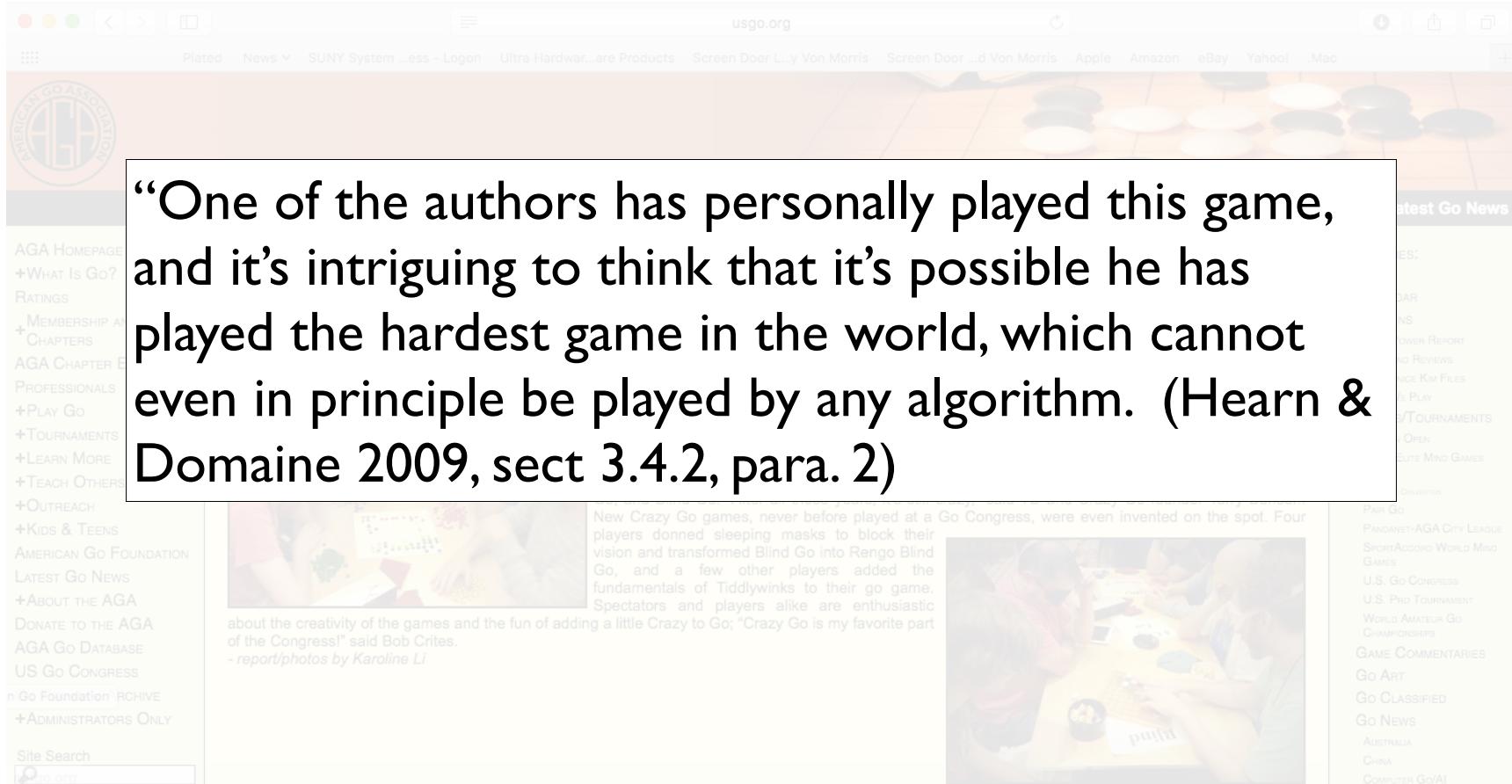
"White plays capturing black, putting herself and black into atari," calls Crazy Go TD Terry Benson. He officiated several games of Rengo Kriegspiel on Tuesday evening — a pair go game in which all four players face away from the main board and play their stones on their own empty board in front of them; the only clues about where their opponents — and even their partner — have played comes when they make an illegal move, or play where their own team or their opponents already have stones. Rengo Kriegspiel is only one of dozens of variants on the game of go that were played by an enthusiastic crowd of around 100 players. Familiar games include Magnetic Go, 4 Color Go, Tessellation Go, 3D Go, Spiral Go, and Blind Go. "After all these years, it's still crazy," said TD and Crazy Go founder Terry Benson. New Crazy Go games, never before played at a Go Congress, were even invented on the spot. Four players donned sleeping masks to block their vision and transformed Blind Go into Rengo Blind Go, and a few other players added the fundamentals of Tiddlywinks to their go game. Spectators and players alike are enthusiastic about the creativity of the games and the fun of adding a little Crazy to Go; "Crazy Go is my favorite part of the Congress!" said Bob Crites.  
- report/photos by Karoline Li



**CATEGORIES:**  
ALL  
CALENDAR  
COLUMNS  
JOHN POWER REPORT  
REDMOND REVIEWS  
THE JANICE KIM FILES  
WHY WE PLAY  
**EVENTS/TOURNAMENTS**  
COTSEN OPEN  
IMSA ELITE MIND GAMES  
OTHER  
NA Go CONVENTION  
PAIR Go  
PANDANET-AGA CITY LEAGUE  
SPORTACCORD WORLD MIND GAMES  
U.S. Go CONGRESS  
U.S. PRO TOURNAMENT  
WORLD AMATEUR Go CHAMPIONSHIPS  
**GAME COMMENTARIES**  
Go ART  
Go CLASSIFIED  
Go NEWS  
AUSTRALIA  
CHINA  
COMPUTER Go/AI

# Rengo Kriegspiel

“One of the authors has personally played this game, and it’s intriguing to think that it’s possible he has played the hardest game in the world, which cannot even in principle be played by any algorithm. (Hearn & Domaine 2009, sect 3.4.2, para. 2)

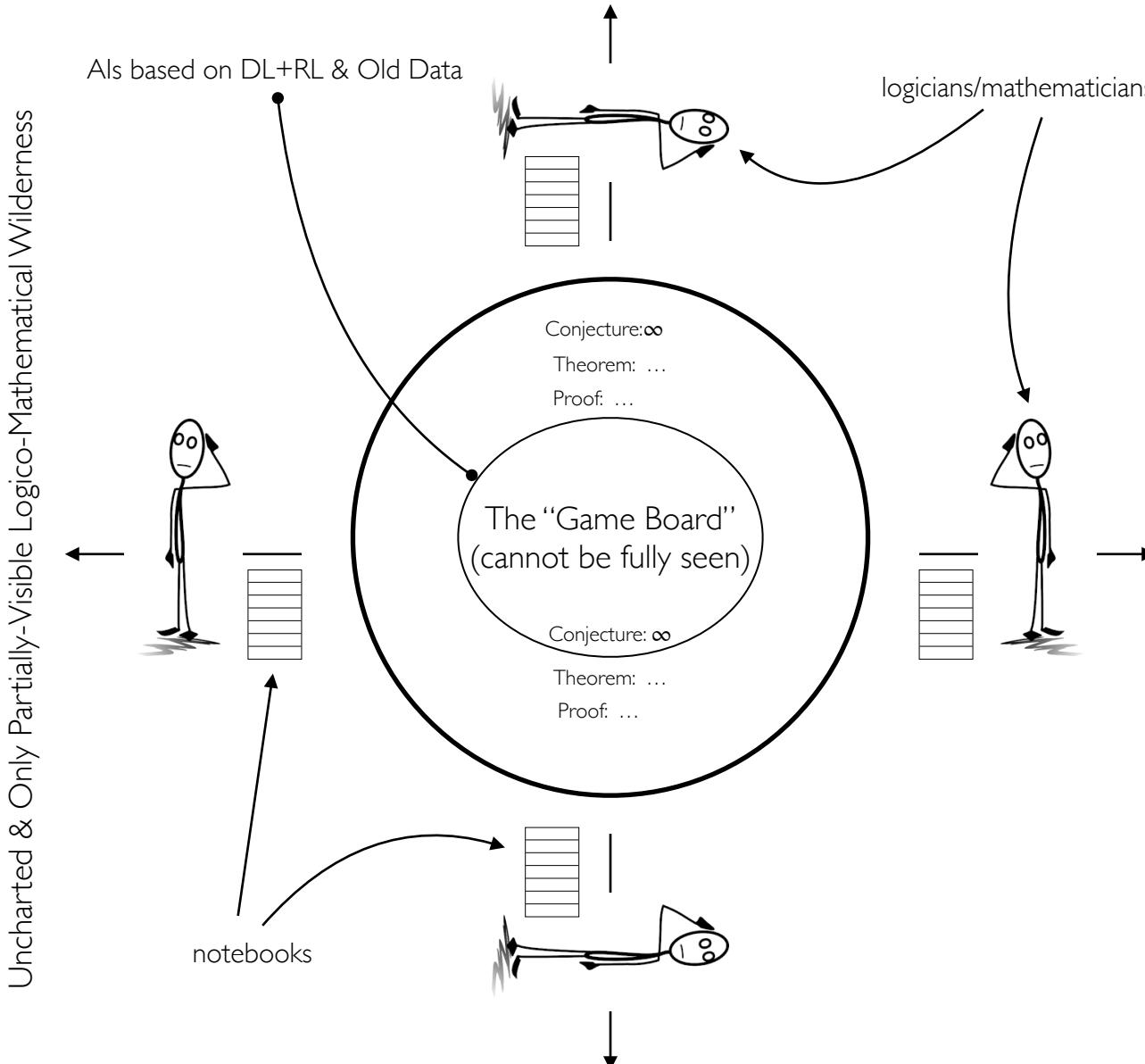




# The Gödel Game

# The Gödel Game

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

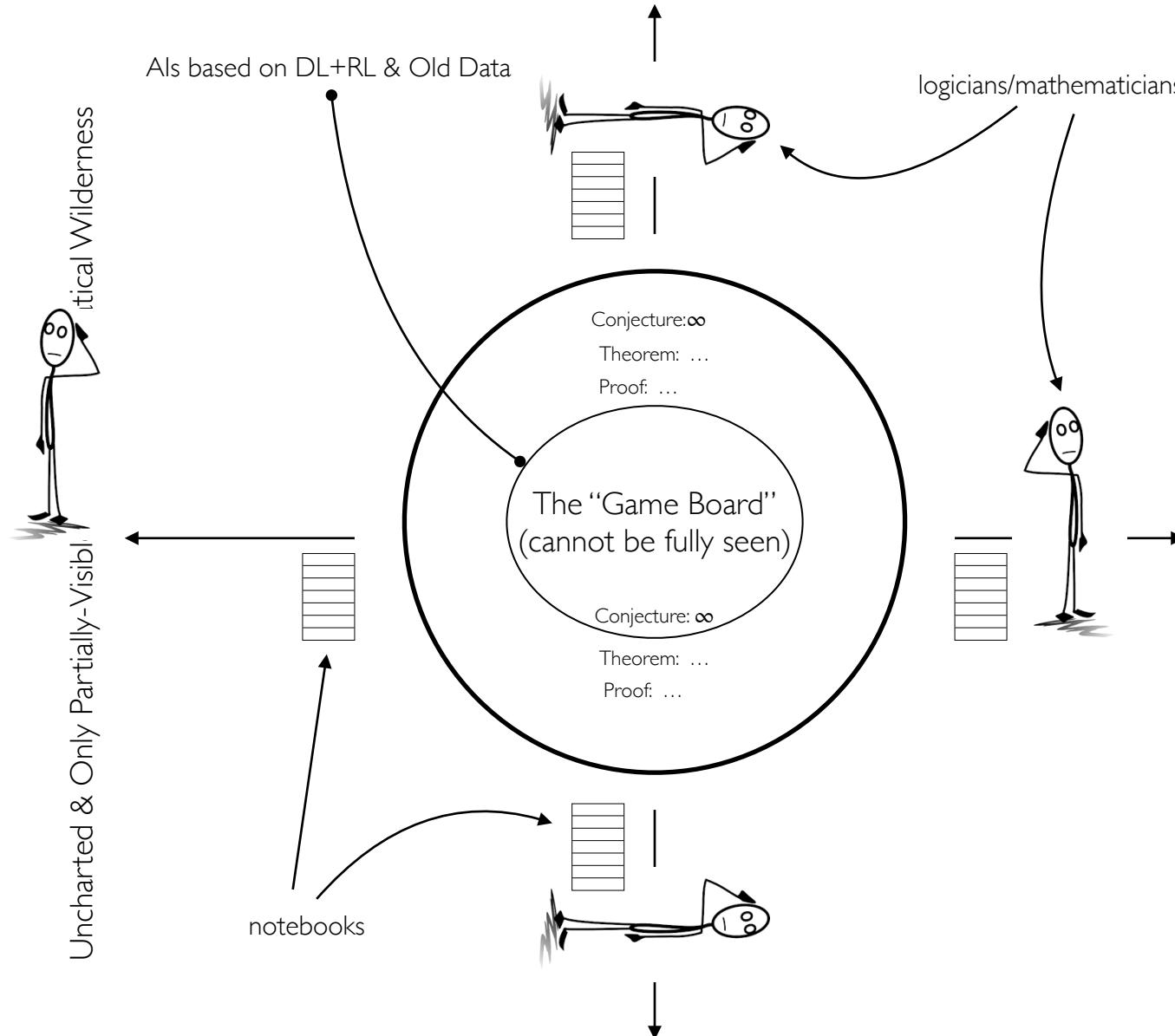


Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

# The Gödel Game

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

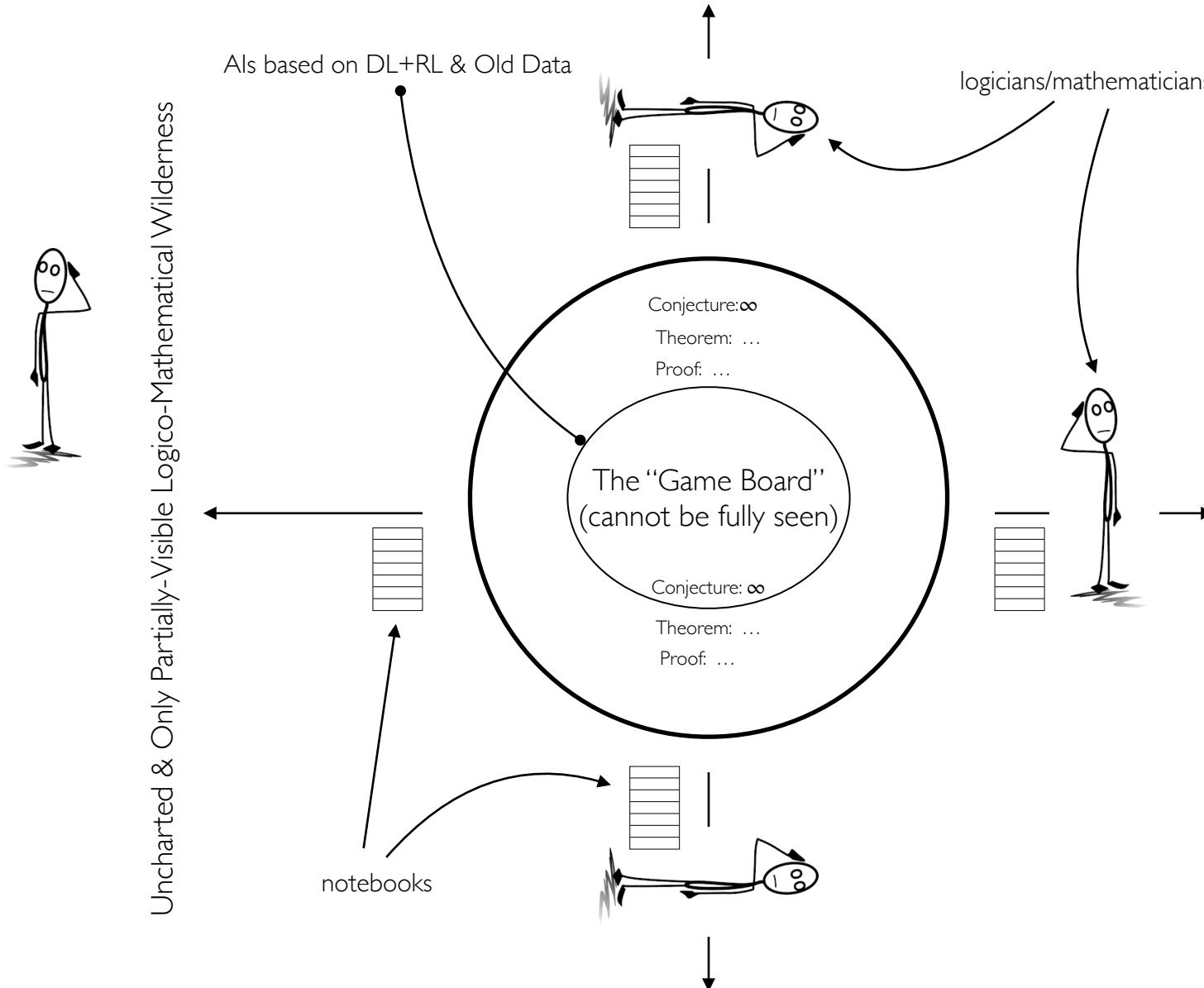


Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

# The Gödel Game

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness



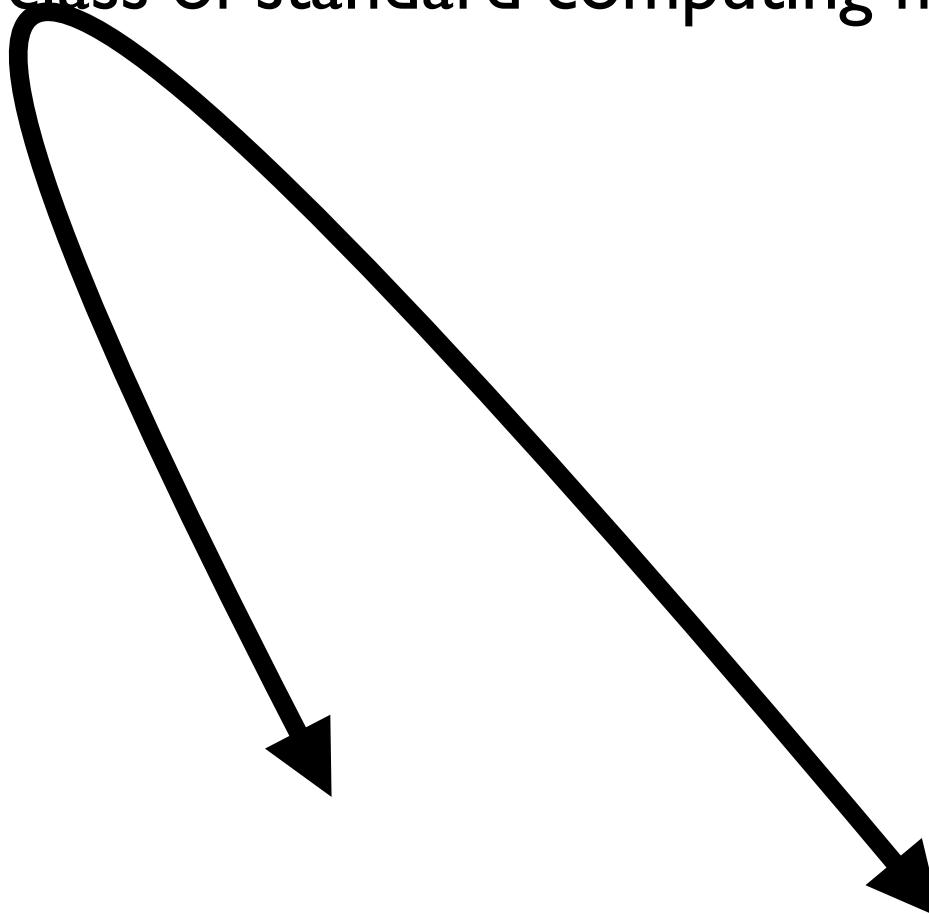
Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

Uncharted & Only Partially-Visible Logico-Mathematical Wilderness

Gödel's Either/Or ...

# The Question

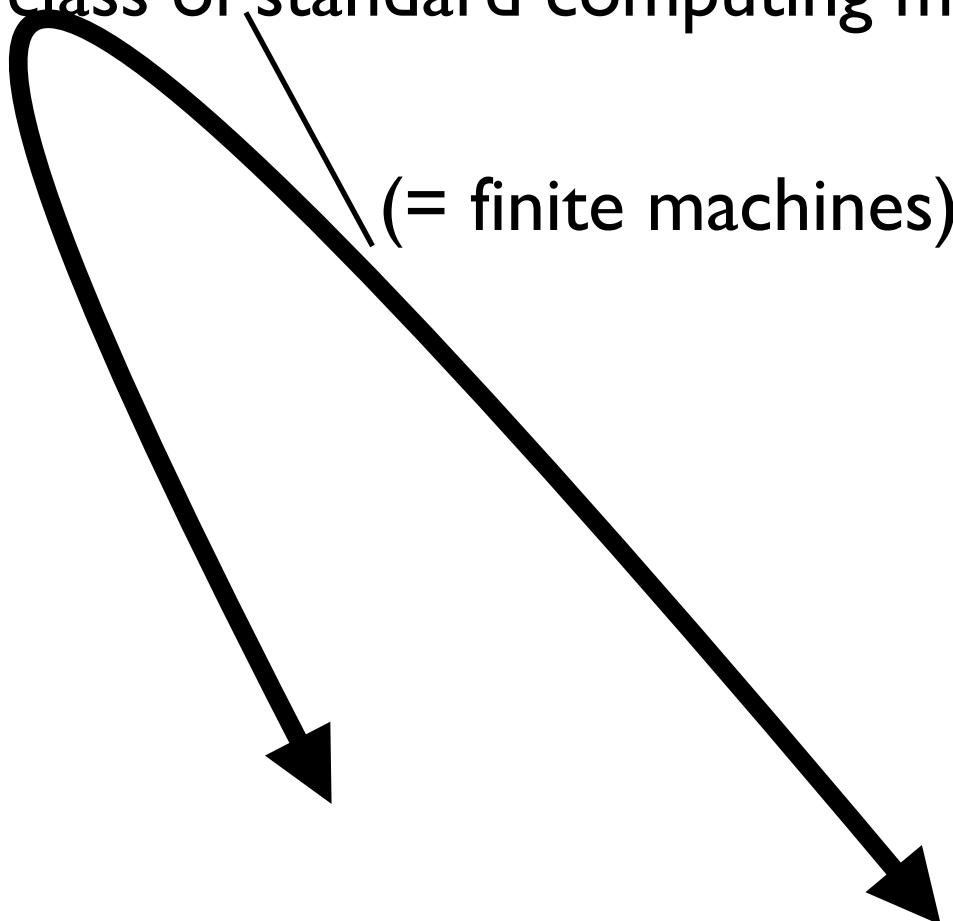
**Q\*** Is the human mind more powerful than the class of standard computing machines?



# The Question

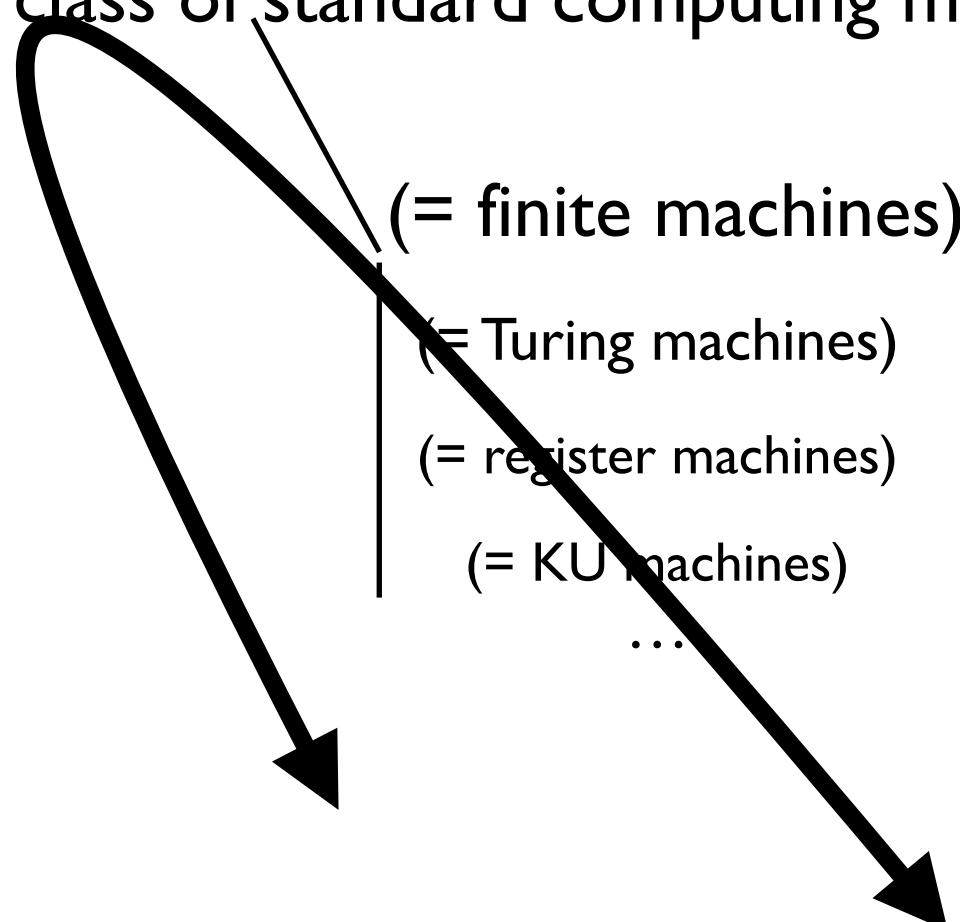
**Q\*** Is the human mind more powerful than the class of standard computing machines?

(= finite machines)



# The Question

**Q\*** Is the human mind more powerful than the class of standard computing machines?



# The Question

**Q\*** Is the human mind more powerful than the class of standard computing machines?

(= finite machines)

(= Turing machines)

(= register machines)

(= KU machines)

...



No.

Yes.

# Gödel's Either/Or

“[E]ither ... the human mind (even within the realm of pure mathematics) infinitely surpasses the power of any finite machine, or else there exist absolutely [humanly?] unsolvable diophantine problems.”

— Gödel, 1951, Providence RI

# Gödel's Either/Or

“[E]ither ... the human mind (even within the realm of pure mathematics) infinitely surpasses the power of any finite machine, or else there exist absolutely [humanly?] unsolvable diophantine problems.”

— Gödel, 1951, Providence RI

More precisely, what does this mean?

# PT as a Diophantine Equation

Equations of this sort were introduced to you in middle-school, when you were asked to find the hypotenuse of a right triangle when you knew its sides; the familiar equation, the famous Pythagorean Theorem that most adults will remember at least echoes of into their old age, is:

$$(PT) \quad a^2 + b^2 = c^2,$$

and this is of course equivalent to

$$(PT') \quad a^2 + b^2 - c^2 = 0,$$

which is a Diophantine equation. Such equations have at least two unknowns (here, we of course have three:  $a, b, c$ ), and the equation is solved when positive integers for the unknowns are found that render the equation true. Three positive integers that render (PT') true are

$$a = 4, b = 3, c = 5.$$

It is *mathematically impossible* that there is a finite computing machine capable of solving any Diophantine equation given to it as a challenge (!).

# ... which means that the 10th of Hilbert's Problems is settled:

Article [Talk](#) Read [Edit](#) [View history](#) [Search Wikipedia](#) 

## Hilbert's problems

From Wikipedia, the free encyclopedia

**Hilbert's problems** are twenty-three problems in [mathematics](#) published by German mathematician [David Hilbert](#) in 1900. The problems were all unsolved at the time, and several of them were very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the [Paris](#) conference of the [International Congress of Mathematicians](#), speaking on August 8 in the [Sorbonne](#). The complete list of 23 problems was published later, most notably in English translation in 1902 by [Mary Frances Winston Newson](#) in the [Bulletin of the American Mathematical Society](#).<sup>[1]</sup>

### Contents [hide]

- 1 [Nature and influence of the problems](#)
- 2 [Ignorabimus](#)
- 3 [The 24th problem](#)
- 4 [Sequel](#)
- 5 [Summary](#)
- 6 [Table of problems](#)
- 7 [See also](#)
- 8 [Notes](#)
- 9 [References](#)
- 10 [Further reading](#)
- 11 [External links](#)

A black and white portrait of David Hilbert, a German mathematician. He is shown from the chest up, wearing a dark suit, a white shirt, and a dark tie. He is also wearing a white fedora hat with a dark band. He has a full, dark beard and mustache. The background is a plain, light color.

David Hilbert

... which means that the 10th of Hilbert's Problems is settled:

|      |                                                                                                                                                   |                                                                                                               |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| 10th | Find an algorithm to determine whether a given polynomial Diophantine <a href="#">equation</a> with integer coefficients has an integer solution. | Resolved. Result: Impossible; <a href="#">Matiyasevich's theorem</a> implies that there is no such algorithm. | 1970 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|

... which means that the 10th of Hilbert's Problems is settled:

|      |                                                                                                                                                   |                                                                                                               |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| 10th | Find an algorithm to determine whether a given polynomial Diophantine <a href="#">equation</a> with integer coefficients has an integer solution. | Resolved. Result: Impossible; <a href="#">Matiyasevich's theorem</a> implies that there is no such algorithm. | 1970 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|

It was a *team effort*, actually; it's not due solely to Matiyasevich, and is often denoted as the 'MRDP Theorem.'

... which means that the 10th of Hilbert's Problems is settled:

|      |                                                                                                                                                   |                                                                                                               |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| 10th | Find an algorithm to determine whether a given polynomial Diophantine <a href="#">equation</a> with integer coefficients has an integer solution. | Resolved. Result: Impossible; <a href="#">Matiyasevich's theorem</a> implies that there is no such algorithm. | 1970 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|

It was a *team effort*, actually; it's not due solely to Matiyasevich, and is often denoted as the 'MRDP Theorem.'

Julia **R**obinson

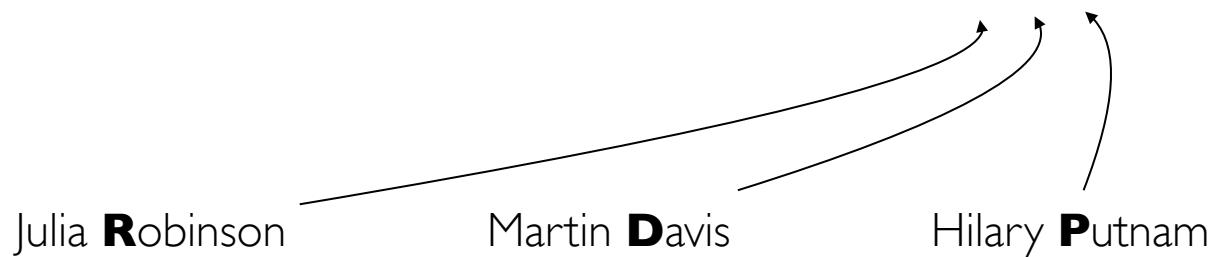
Martin **D**avis

Hilary **P**utnam

... which means that the 10th of Hilbert's Problems is settled:

|      |                                                                                                                                   |                                                                                                               |      |
|------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| 10th | Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. | Resolved. Result: Impossible; <a href="#">Matiyasevich's theorem</a> implies that there is no such algorithm. | 1970 |
|------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|

It was a *team effort*, actually; it's not due solely to Matiyasevich, and is often denoted as the 'MRDP Theorem.'



# Background

problem?<sup>7</sup> In his lecture, Gödel precisely defines diophantine problems, but we don't need to bother with all of the details here; we only need to appreciate the general structure of such a problem, and that can be achieved quickly as follows, given what was introduced in Chapter 2.

Each diophantine problem has at its core a polynomial  $\mathcal{P}$  whose variables are comprised by two lists,  $x_1, x_2, \dots, x_n$  and  $y_1, y_2, \dots, y_m$ ; all variables must be integers, and the same for subscripts  $n$  and  $m$ . To represent a polynomial in a manner that announces its variables, we can write

$$\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j).$$

But Gödel was specifically interested in whether, for all integers that can be set to the variables  $x_i$ , there are integers that can be set to the  $y_j$ , such that the polynomial equals 0. To make this clearer, first, here are two particular, simple equations that employ polynomials that are both instances of the needed form:

$$\text{E1} \quad 3x - 2y = 0$$

$$\text{E2} \quad 2x^2 - y = 0$$

All we need to do now is prefix these equations with quantifiers in the pattern Gödel gave. This pattern is quite simple: universally quantify over each  $x_i$  variable (using the now-familiar  $\forall$ ), after which we existentially quantify over each  $y_i$  variable (using the also-now-familiar  $\exists$ ). Thus, here are the two diophantine problems that correspond to the pair E1 and E2 from just above:

$$\text{P1} \quad \text{Is it true that } \forall x \exists y (3x - 2y = 0) ?$$

$$\text{P2} \quad \text{Is it true that } \forall x \exists y (2x^2 - y = 0) ?$$

# Great Paper!



---

Hilbert's Tenth Problem is Unsolvable

Author(s): Martin Davis

Source: *The American Mathematical Monthly*, Vol. 80, No. 3 (Mar., 1973), pp. 233-269

Published by: [Mathematical Association of America](#)

Stable URL: <http://www.jstor.org/stable/2318447>

Accessed: 22/03/2013 11:53

---

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

<http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

# Great Paper!



---

Hilbert's Tenth Problem is Unsolvable

Author(s): Martin Davis

Source: *The American Mathematical Monthly*, Vol. 80, No. 3 (Mar., 1973), pp. 233-269

Published by: [Mathematical Association of America](#)

Stable URL: <http://www.jstor.org/stable/2318447>

Accessed: 22/03/2013 11:53

---

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

<http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

# Great Paper!



Hilbert's Tenth Problem  
Author(s): Martin Davis  
Source: *The Annals of Mathematics*, Vol. 74, No. 3, pp. 33-269  
Published by: JSTOR  
Stable URL: <http://www.jstor.org/stable/1970726>  
Accessed: 22/03/2013 11:53:28 AM

Your use of the JSTOR logo indicates that you have read and accepted JSTOR's Terms and Conditions, available at <http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit organization dedicated to the preservation and facilitation of scholarly research. It is a member of the Association of Research Libraries (ARL) and the Council on Library and Information Resources (CLIR).

**1. Diophantine Sets.** In this article the usual problem of Diophantine equations will be inverted. Instead of being given an equation and seeking its solutions, one will begin with the set of “solutions” and seek a corresponding Diophantine equation. More precisely:

DEFINITION. A set  $S$  of ordered  $n$ -tuples of positive integers is called **Diophantine** if there is a polynomial  $P(x_1, \dots, x_n, y_1, \dots, y_m)$ , where  $m \geq 0$ , with integer coefficients such that a given  $n$ -tuple  $\langle x_1, \dots, x_n \rangle$  belongs to  $S$  if and only if there exist positive integers  $y_1, \dots, y_m$  for which

This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM  
All use subject to [JSTOR Terms and Conditions](#)

1973] HILBERT'S TENTH PROBLEM IS UNSOLVABLE 235

$$P(x_1, \dots, x_n, y_1, \dots, y_m) = 0.$$

Borrowing from logic the symbols “ $\exists$ ” for “there exists” and “ $\Leftrightarrow$ ” for “if and only if”, the relation between the set  $S$  and the polynomial  $P$  can be written succinctly as:

$$\langle x_1, \dots, x_n \rangle \in S \Leftrightarrow (\exists y_1, \dots, y_m) [P(x_1, \dots, x_n, y_1, \dots, y_m) = 0],$$

or equivalently:

$$S = \{ \langle x_1, \dots, x_n \rangle \mid (\exists y_1, \dots, y_m) [P(x_1, \dots, x_n, y_1, \dots, y_m) = 0] \}.$$

Note that  $P$  may (and in non-trivial cases always will) have negative coefficients. The word “polynomial” should always be so construed in the article except where the contrary is explicitly stated. Also all numbers in this article are positive integers unless the contrary is stated.

# Great Paper!



Hilbert's Tenth Problem is Unsolvable

Author(s): Martin Davis

Source: *The American Mathematical Monthly*, Vol.

Published by: [Mathematical Association of America](#)

Stable URL: <http://www.jstor.org/stable/2318447>

Accessed: 22/03/2013 11:53

Your use of the JSTOR archive indicates your acceptance of the

<http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and scholars in a trusted digital archive. We use information technology and tools to preserve and provide access to the scholarly record. For more information about JSTOR, please contact support@jstor.org.

**1. Diophantine Sets.** In this article the usual problem of Diophantine equations will be inverted. Instead of being given an equation and seeking its solutions, one will begin with the set of “solutions” and seek a corresponding Diophantine equation. More precisely:

**DEFINITION.** A set  $S$  of ordered  $n$ -tuples of positive integers is called **Diophantine** if there is a polynomial  $P(x_1, \dots, x_n, y_1, \dots, y_m)$ , where  $m \geq 0$ , with integer coefficients such that a given  $n$ -tuple  $\langle x_1, \dots, x_n \rangle$  belongs to  $S$  if and only if there exist positive integers  $y_1, \dots, y_m$  for which

This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM  
All use subject to [JSTOR Terms and Conditions](#)

1973]

HILBERT'S TENTH PROBLEM IS UNSOLVABLE

235

$$P(x_1, \dots, x_n, y_1, \dots, y_m) = 0.$$

Borrowing from logic the symbols “ $\exists$ ” for “there exists” and “ $\Leftrightarrow$ ” for “if and only if”, the relation between the set  $S$  and the polynomial  $P$  can be written succinctly as:

$$\langle x_1, \dots, x_n \rangle \in S \Leftrightarrow (\exists y_1, \dots, y_m) [P(x_1, \dots, x_n, y_1, \dots, y_m) = 0],$$

or equivalently:

$$S = \{ \langle x_1, \dots, x_n \rangle \mid (\exists y_1, \dots, y_m) [P(x_1, \dots, x_n, y_1, \dots, y_m) = 0] \}.$$

Note that  $P$  may (and in non-trivial cases always will) have negative coefficients. The word “polynomial” should always be so construed in the article except where the contrary is explicitly stated. Also all numbers in this article are positive integers unless the contrary is stated.

# Great Paper!

Notice that this is a perfect fit with how we used formal logic to present and understand the Polynomial Hierarchy and the Arithmetic Hierarchy.



Your use of the JSTOR archive indicates your acceptance of the  
<http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and scholars in a trusted digital archive. We use information technology and tools to preserve and provide access to the scholarly record. For more information about JSTOR, please contact support@jstor.org.

Unsolvable  
*Mathematical Monthly*, Vol. 80, No. 9, Association of America  
<http://www.jstor.org/stable/2318447>

**1. Diophantine Sets.** In this article the usual problem of Diophantine equations will be inverted. Instead of being given an equation and seeking its solutions, one will begin with the set of “solutions” and seek a corresponding Diophantine equation. More precisely:

**DEFINITION.** A set  $S$  of ordered  $n$ -tuples of positive integers is called **Diophantine** if there is a polynomial  $P(x_1, \dots, x_n, y_1, \dots, y_m)$ , where  $m \geq 0$ , with integer coefficients such that a given  $n$ -tuple  $\langle x_1, \dots, x_n \rangle$  belongs to  $S$  if and only if there exist positive integers  $y_1, \dots, y_m$  for which

This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM  
All use subject to [JSTOR Terms and Conditions](#)

1973]

HILBERT'S TENTH PROBLEM IS UNSOLVABLE

235

$$P(x_1, \dots, x_n, y_1, \dots, y_m) = 0.$$

Borrowing from logic the symbols “ $\exists$ ” for “there exists” and “ $\Leftrightarrow$ ” for “if and only if”, the relation between the set  $S$  and the polynomial  $P$  can be written succinctly as:

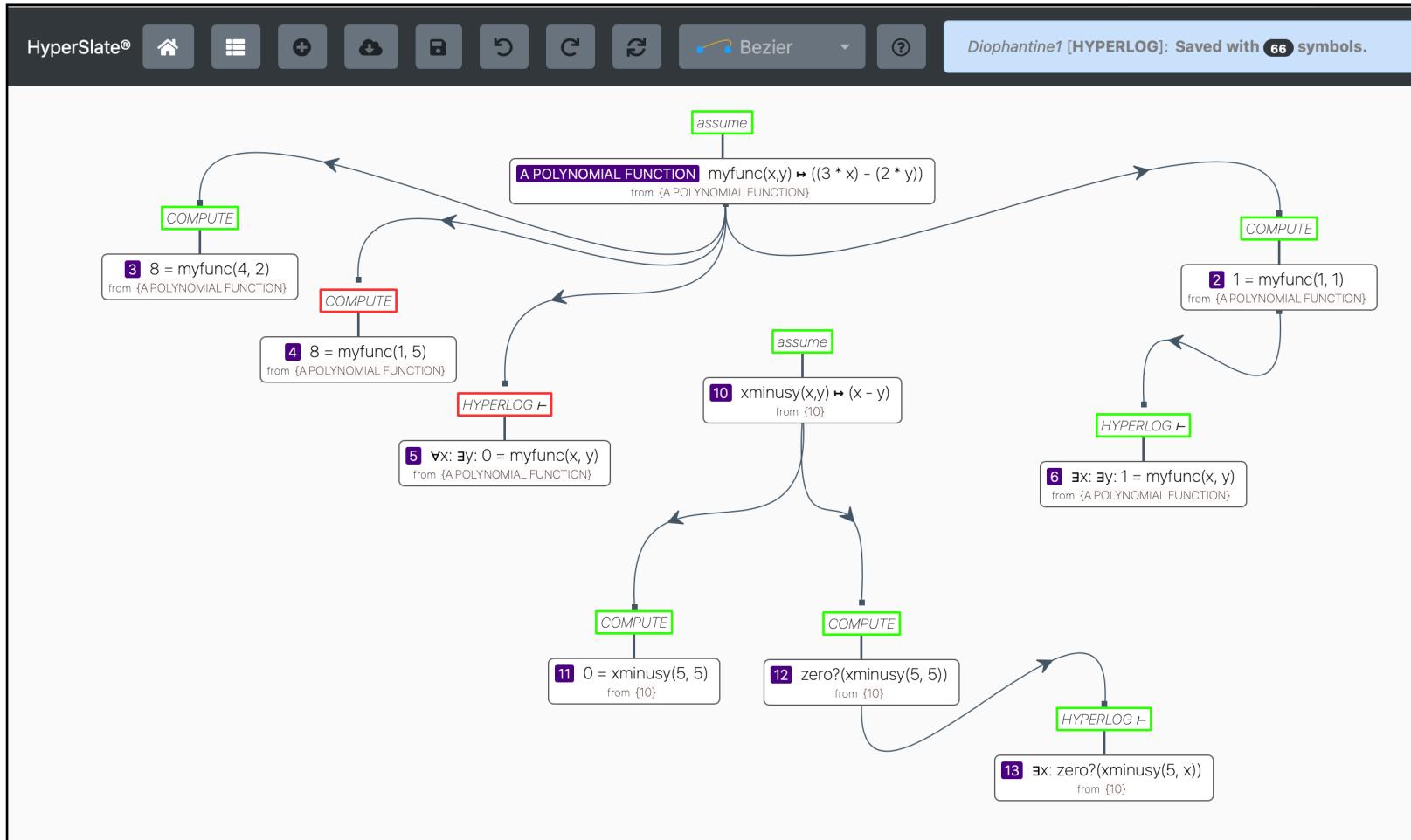
$$\langle x_1, \dots, x_n \rangle \in S \Leftrightarrow (\exists y_1, \dots, y_m) [P(x_1, \dots, x_n, y_1, \dots, y_m) = 0],$$

or equivalently:

$$S = \{ \langle x_1, \dots, x_n \rangle \mid (\exists y_1, \dots, y_m) [P(x_1, \dots, x_n, y_1, \dots, y_m) = 0] \}.$$

Note that  $P$  may (and in non-trivial cases always will) have negative coefficients. The word “polynomial” should always be so construed in the article except where the contrary is explicitly stated. Also all numbers in this article are positive integers unless the contrary is stated.

# Diophantine “Threat” in the Programming Language Hyperlog®



# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j) ?$

**Yes.**

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

**Yes.**



# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

Yes.



The human mind is *not* infinitely more powerful than any standard computing machine.

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

Yes.

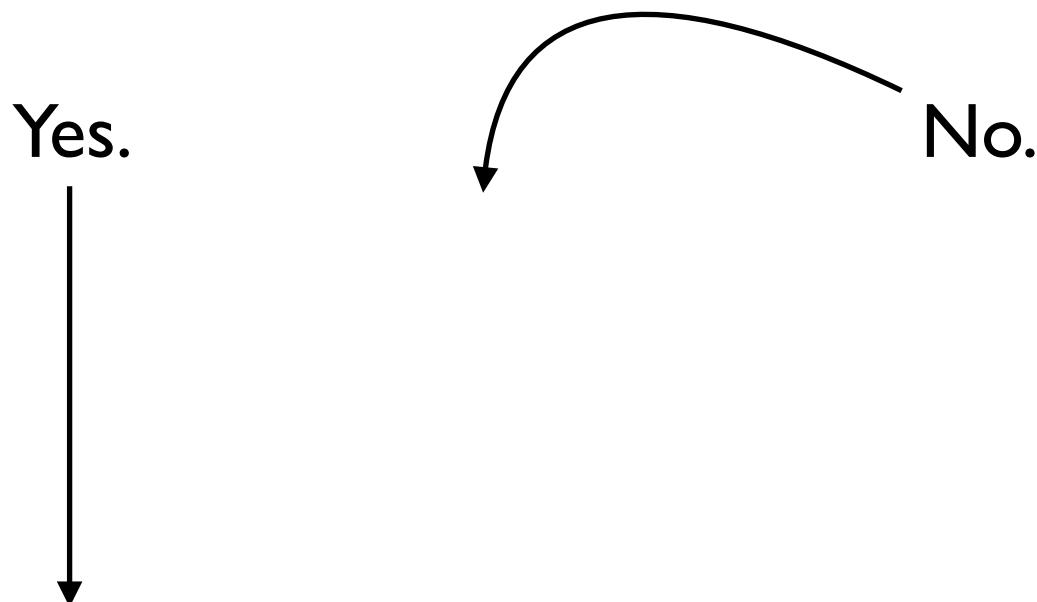
No.



The human mind is *not* infinitely more powerful than any standard computing machine.

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?



The human mind is *not* infinitely more powerful than any standard computing machine.

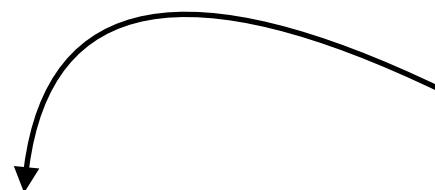
# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

Yes.



No.



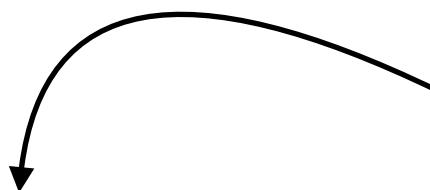
The human mind *is* infinitely more powerful than any standard computing machine.

The human mind *is not* infinitely more powerful than any standard computing machine.

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

Yes.



No.



The human mind *is* infinitely more powerful than any standard computing machine.

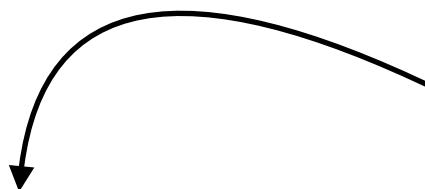
The human mind *is not* infinitely more powerful than any standard computing machine.

Where else early in his career does Dr Gödel use this form? \$20

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists y_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

Yes.



No.



The human mind *is* infinitely more powerful than any standard computing machine.

The human mind *is not* infinitely more powerful than any standard computing machine.

Where else early in his career does Dr Gödel use this form? \$20

# The Crux

$\exists \mathcal{P}$  s.t. no human mind could ever decide  $\forall x_1 \forall x_2 \dots \forall x_k \exists y_1 \exists y_2 \dots \exists x_j (\mathcal{P}(x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_j))$ ?

Yes.



No.

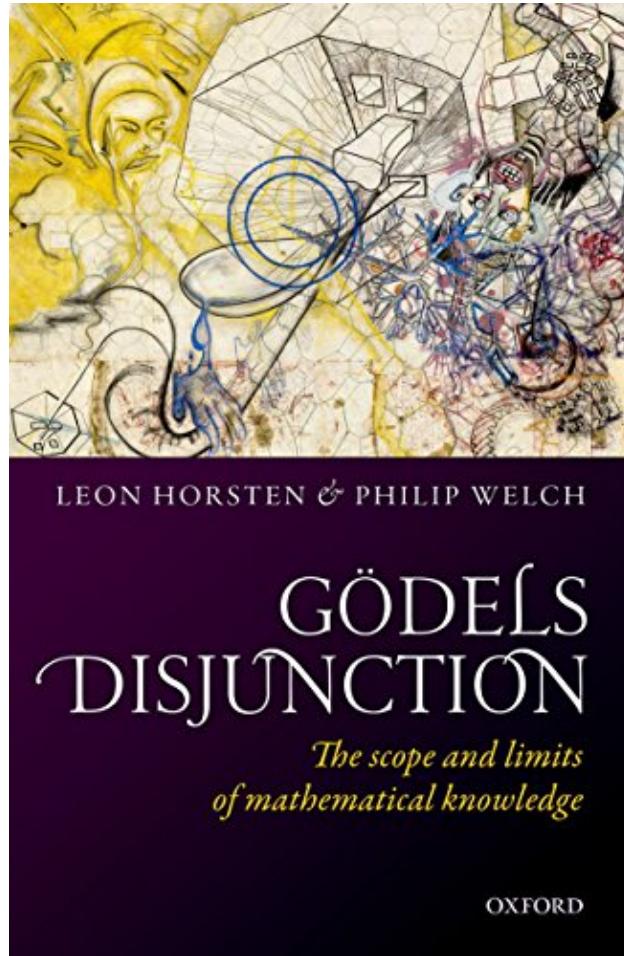


The human mind *is* infinitely more powerful than any standard computing machine.

The human mind *is not* infinitely more powerful than any standard computing machine.

**Entire book on Gödel's Either-Or ...**

# Entire book on Gödel's Either-Or ...



# Earlier Gödelian Argument for the “No.”

[Get Access](#)[Share](#)[Export](#)

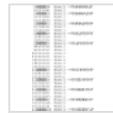
## Outline

### Abstract

1. Introduction
2. Clarifying computationalism, the view to be overthru...
3. The essence of hypercomputation: harnessing the in...
4. Gödel on minds exceeding (Turing) machines by “co...
5. Setting the context: the busy beaver problem
6. The new Gödelian argument
7. Objections
8. Conclusion
- References

[Show full outline ▾](#)

## Figures (1)



## Tables (1)

Table 1



Applied Mathematics and Computation

Volume 176, Issue 2, 15 May 2006, Pages 516-530



## A new Gödelian argument for hypercomputing minds based on the busy beaver problem ★

Selmer Bringsjord <img alt="

Bringsjord vs. Rapaport ...

# *Will AI Match (Or Even Exceed) Human Intelligence?*



No.



Yes.

# *Will AI Match (Or Even Exceed) Human Intelligence?*



No.



Yes.



?

## Will AI Succeed? The “Yes” Position

William J. Rapaport

Department of Computer Science and Engineering,  
Department of Philosophy, Department of Linguistics,  
and Center for Cognitive Science  
University at Buffalo, The State University of New York,  
Buffalo, NY 14260-2500

rapaport@buffalo.edu  
<http://www.cse.buffalo.edu/~rapaport/>

July 30, 2025

### Abstract

This is a draft of the “Yes” side of a proposed debate book, *Will AI Succeed?*. The “No” position will be taken by Selmer Bringsjord, and will be followed by rejoinders on each side.

AI should be considered as the branch of computer science that investigates whether, and to what extent, cognition is computable. Computability is a logical or mathematical notion. So, the only way to prove that something—including (some aspect of) cognition—is *not* computable is via a logical or mathematical argument. Because no such argument has met with general acceptance (in the way that other proofs of non-computability—such as the Halting Problem—have been generally accepted), there is no logical reason to think that AI won’t eventually match human intelligence. Along the way, I discuss the Turing Test as a measure of AI’s success at showing the computability of various aspects of cognition, and I consider the potential roadblocks set by consciousness, qualia, and mathematical intuition.

# Contents

|                                                                           |           |
|---------------------------------------------------------------------------|-----------|
| <b>1 Yes, (Real) Intelligence (Probably) Is (Artificially) Computable</b> | <b>5</b>  |
| <b>2 What Is AI?</b>                                                      | <b>6</b>  |
| 2.1 A Very, Very Brief History of AI . . . . .                            | 6         |
| 2.1.1 Turing on “Machine” Intelligence . . . . .                          | 6         |
| 2.1.2 The Dartmouth Project . . . . .                                     | 7         |
| 2.2 Other Definitions of ‘AI’ . . . . .                                   | 8         |
| 2.2.1 Minsky’s Definition . . . . .                                       | 8         |
| 2.2.2 Boden’s Definition . . . . .                                        | 8         |
| 2.3 ‘Artificial’ and ‘Intelligence’ . . . . .                             | 9         |
| 2.3.1 Intelligence? Or Cognition! . . . . .                               | 9         |
| 2.3.2 Artificial? Synthetic? Or Computational! . . . . .                  | 12        |
| 2.3.3 Does ‘Artificial’ Have to Mean “Computable”? . . . . .              | 13        |
| 2.4 AI as Computational Cognition . . . . .                               | 15        |
| 2.4.1 AI and Computer Science . . . . .                                   | 15        |
| 2.4.2 Algorithms . . . . .                                                | 17        |
| 2.4.3 Computability . . . . .                                             | 18        |
| 2.4.4 Cognition . . . . .                                                 | 18        |
| 2.5 AI as the Popular Press Sees It . . . . .                             | 19        |
| 2.6 Three Goals of AI . . . . .                                           | 23        |
| 2.7 Summary . . . . .                                                     | 24        |
| <b>3 What Counts as “Success”?</b>                                        | <b>24</b> |
| 3.1 Theoretical vs. Practical Success . . . . .                           | 25        |
| 3.2 Measuring and Evaluating Success . . . . .                            | 26        |
| 3.2.1 Measuring Devices . . . . .                                         | 26        |
| 3.2.2 The Turing Test . . . . .                                           | 27        |
| 3.2.3 AI’s Successes . . . . .                                            | 32        |
| 3.3 Summary . . . . .                                                     | 33        |
| <b>4 What Counts as ‘Failure’?</b>                                        | <b>34</b> |
| 4.1 Practical Arguments against AI’s Success . . . . .                    | 34        |
| 4.2 Biological Arguments against AI’s Success . . . . .                   | 36        |
| 4.2.1 Hubert Dreyfus’s Argument . . . . .                                 | 36        |
| 4.2.2 John Searle’s Argument . . . . .                                    | 37        |
| 4.3 Landgrebe and Smith’s Argument . . . . .                              | 39        |
| 4.4 Vitalistic Arguments against AI’s Success . . . . .                   | 40        |
| 4.5 Mathematical Arguments against AI’s Success . . . . .                 | 44        |
| 4.6 Summary . . . . .                                                     | 47        |
| <b>5 Will All of AI Succeed?</b>                                          | <b>47</b> |
| 5.1 The Cognitive Computability Thesis . . . . .                          | 47        |
| 5.2 Is Consciousness Computable? . . . . .                                | 49        |
| 5.3 Are Qualia Computable? . . . . .                                      | 51        |
| 5.4 Is Mathematical Cognition Computable? . . . . .                       | 54        |
| 5.4.1 Gödel’s Incompleteness Theorem . . . . .                            | 54        |
| 5.4.2 Lucas’s Argument . . . . .                                          | 56        |
| 5.4.3 Turing’s Argument . . . . .                                         | 58        |

|          |                                           |           |
|----------|-------------------------------------------|-----------|
| 5.5      | Summary: But $X$ Is Not Computable!       | 60        |
| <b>6</b> | <b>Concluding Remarks</b>                 | <b>61</b> |
| <b>7</b> | <b>Final Summary</b>                      | <b>64</b> |
| <b>A</b> | <b>Sidebar: The Chinese Room Argument</b> | <b>65</b> |
| <b>B</b> | <b>Sidebar: Computability</b>             | <b>67</b> |
| B.1      | Varieties of Computability                | 67        |
| B.2      | Turing Machine Computability              | 69        |
| B.2.1    | Five Great Insights of Computer Science   | 69        |
| B.2.2    | Turing Machines                           | 70        |
| B.2.3    | Universal Turing Machines                 | 71        |
| B.3      | Efficient Computability                   | 71        |
| <b>C</b> | <b>Sidebar: Simulations</b>               | <b>73</b> |
| <b>D</b> | <b>Sidebar: Recursion</b>                 | <b>76</b> |
| <b>E</b> | <b>Sidebar: <i>Reductio</i> Arguments</b> | <b>78</b> |
| <b>F</b> | <b>Sidebar: The Halting Problem</b>       | <b>80</b> |
| F.1      | The Halting Function $H$                  | 80        |
| F.2      | Proof Sketch that $H$ Is Not Computable   | 82        |
| F.2.1    | Step 1                                    | 82        |
| F.2.2    | Step 2                                    | 83        |
| F.2.3    | Step 3                                    | 84        |
| F.2.4    | Step 4                                    | 84        |
| F.2.5    | Final Result                              | 85        |
| <b>G</b> | <b>Glossary</b>                           | <b>86</b> |

# *Will AI Match (Or Even Exceed) Human Intelligence?*



No.



Yes.

# *Will AI Match (Or Even Exceed) Human Intelligence?*



No.



Yes.



?

# Will AI Match (Or Even Exceed) Human Intelligence?



No.



Yes.



?

I: “Negative” enumerative induction for  $\neg \exists \text{year}_k (\text{AI} = \text{HI} @ \text{year}_k)$  from  $\text{AI} \neq \text{HI} @ \text{year}_{1958} \wedge \dots \wedge \text{AI} \neq \text{HI} @ \text{year}_{2021}$ . Plus the proposition that AI is in fact not improving — relative to the intellectual stuff that matters most.

# Will AI Match (Or Even Exceed) Human Intelligence?



No.



Yes.



?

**1:** “Negative” enumerative induction for  $\neg \exists \text{year}_k (\text{AI} = \text{HI} @ \text{year}_k)$  from  $\text{AI} \neq \text{HI} @ \text{year}_{1958} \wedge \dots \wedge \text{AI} \neq \text{HI} @ \text{year}_{2021}$ . Plus the proposition that AI is in fact not improving — relative to the intellectual stuff that matters most.

**2:** There is no absolutely unsolvable-for-humans Diophantine problem. Hence as Gödel explained, we get “No.”

# Will AI Match (Or Even Exceed) Human Intelligence?



No.



Yes.



?

**1:** “Negative” enumerative induction for  $\neg \exists \text{year}_k (\text{AI} = \text{HI} @ \text{year}_k)$  from  $\text{AI} \neq \text{HI} @ \text{year}_{1958} \wedge \dots \wedge \text{AI} \neq \text{HI} @ \text{year}_{2021}$ . Plus the proposition that AI is in fact not improving — relative to the intellectual stuff that matters most.

**2:** There is no absolutely unsolvable-for-humans Diophantine problem. Hence as Gödel explained, we get “No.”

**3:** Amundsen and The Explorer Argument.

# Will AI Match (Or Even Exceed) Human Intelligence?



No.



Yes.



?

**1:** “Negative” enumerative induction for  $\neg \exists \text{year}_k (\text{AI} = \text{HI} @ \text{year}_k)$  from  $\text{AI} \neq \text{HI} @ \text{year}_{1958} \wedge \dots \wedge \text{AI} \neq \text{HI} @ \text{year}_{2021}$ . Plus the proposition that AI is in fact not improving — relative to the intellectual stuff that matters most.

**2:** There is no absolutely unsolvable-for-humans Diophantine problem. Hence as Gödel explained, we get “No.”

**3:** Amundsen and The Explorer Argument.

**4:** And finally, the sledgehammer is used: *phenomenal consciousness*.

# **Logistics; Submission Info (Final Projects)**

# **Logistics; Submission Info (Final Projects)**

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.

# Logistics; Submission Info (Final Projects)

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.
- Get that Final Project in:

# Logistics; Submission Info (Final Projects)

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.
- Get that Final Project in:
- Final Project due Dec 17 11:59pm

# Logistics; Submission Info (Final Projects)

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.
- Get that Final Project in:
- Final Project due Dec 17 11:59pm
- We tried mightily to get Outlook to coöperate via forwarding, but no go — & have no confirmed idea why. So submission to [selmer@rpi.edu](mailto:selmer@rpi.edu) not now forthcoming, but in the meantime work directly:

# Logistics; Submission Info (Final Projects)

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.
- Get that Final Project in:
- Final Project due Dec 17 11:59pm
- We tried mightily to get Outlook to coöperate via forwarding, but no go — & have no confirmed idea why. So submission to [selmer@rpi.edu](mailto:selmer@rpi.edu) not now forthcoming, but in the meantime work directly:
  - [Selmer.Bringjord+F25SUBMISSIONS@gmail.com](mailto:Selmer.Bringjord+F25SUBMISSIONS@gmail.com)

# Logistics; Submission Info (Final Projects)

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.
- Get that Final Project in:
- Final Project due Dec 17 11:59pm
- We tried mightily to get Outlook to coöperate via forwarding, but no go — & have no confirmed idea why. So submission to [selmer@rpi.edu](mailto:selmer@rpi.edu) not now forthcoming, but in the meantime work directly:
  - [Selmer.Bringjord+F25SUBMISSIONS@gmail.com](mailto:Selmer.Bringjord+F25SUBMISSIONS@gmail.com)
  - [SelmerBringsjord+F25SUBMISSIONS@gmail.com](mailto:SelmerBringsjord+F25SUBMISSIONS@gmail.com)

# Logistics; Submission Info (Final Projects)

- Grades: Everyone has an A for 40% (Required) — but finish if it's open for you. 20% A if you came/come :). Gift of 20% for everyone. = 80% A = 4.0.
- Get that Final Project in:
- Final Project due Dec 17 11:59pm
- We tried mightily to get Outlook to coöperate via forwarding, but no go — & have no confirmed idea why. So submission to [selmer@rpi.edu](mailto:selmer@rpi.edu) not now forthcoming, but in the meantime work directly:
  - [Selmer.Bringjord+F25SUBMISSIONS@gmail.com](mailto:Selmer.Bringjord+F25SUBMISSIONS@gmail.com)
  - [SelmerBringsjord+F25SUBMISSIONS@gmail.com](mailto:SelmerBringsjord+F25SUBMISSIONS@gmail.com)
- Questions? Adjustments/updates Final Projects?



*Med nok penger, kan  
logikk løse alle problemer.*