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propositional calculus & FOL)
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® The Time-Travel Theorem
® Godel’s “God Theorem”

® Could a Finite Machine Match
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A corollary of the First Incompleteness Theorem: We cannot prove (in classical mathematics) that mathematics is consistent.
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Ergo, step one: What is LP?
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L: This sentence is false.
Suppose that T(L); then = T(L).
Suppose that = T(L) then T(L).

Hence: T(L) iff (i.e., if & only if) = T(L).

Contradiction!
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P: This sentence is unprovable.

Suppose that P is true. Then we can immediately deduce
that P is provable, because here is a proof: P — P is an easy
theorem, and from it and our supposition we deduce P by
modus ponens. But since what P says is that it’s unprovable,
we have deduced that P is false under our initial supposition.

Suppose on the other hand that P is false. Then we can
immediately deduce that P is unprovable: Suppose for reductio that
P is provable; then P holds as a result of some proof, but what P
says is that it’s unprovable; and so we have contradiction. But since
what P says is that it’s unprovable, and we have just proved that
under our supposition, we arrive at the conclusion that P is true.

T(P) iff (i.e., if & only if) -T(I_’) = F(P)
Contradiction!







All of this is fishy; but

Godel transformed it into
utterly precise, impactful,
indisputable reasoning ...



PA (Peano Arithmetic):

Al
A2
A3
A4
A5
A6
A7

Va (0 # s(x))
VaVy(s(x) = s(y) — = =y)

Va(z # 0 — Jy(z = s(y))
Ve(zx + 0 = z)

vavy(z +s(y) = s(z +y))
Va(z x 0=0)

VaVy(z x s(y) = (z X y) + )

And, every sentence that is the universal closure of an instance of

([¢(0) AVz(o(z) — @(s(2))] — Vzo(z))

where ¢(x) is open wif with variable x, and perhaps others, free.



PA2 (Second-Order Peano Arithmetic)

https://rpi.logicamodernapproach.com/hyperslate/public/SelmerBringsjord@gmail.com/PA2



https://rpi.logicamodernapproach.com/hyperslate/public/Selmer.Bringsjord@gmail.com/PA2

Arithmetic is Part of All Things Sci/Eng/Tech!

but courtesy of Godel: We can’t even prove all truths of arithmetic!

Each circle is a larger part
of the formal sciences.
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Godel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a
number n, and by the same basic lexicographic ordering, every
computer program, formula, etc. is named by a number m in a
lexicographic ordering going from |,to 2,to ...

Or, every syntactically valid computer program
in Clojure that you will ever write can be
uniquely denoted by some number m in the
lexicographic ordering of all syntactically valid
such programs. So your program r can just be
coded as a numeral m” in a formal language that
captures arithmetic (i.e., an arithmetic language).



Godel’s First Incompleteness Theorem

Let @ be a set of arithmetic sentences that is

(i) consistent (i.e. no contradiction ¢» A —¢h can be

deduced from ®);
(1) s.t.an algorithm Is available to decide whether or

not a given string u is a member of @; and

(1) sufficiently expressive to logicize all of the
operations of a standard computing machine (e.g. a
Turing machine, register machine, KU machine,

etc.).

Then there is an “undecidable” arithmetic sentence &
from Godel that can't be proved from @, nor can the
negation of this sentence (i.e. &) be proved from ®!



Alas, that’s painfully verbose.
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pocket theorem

Suppose @ D PA (= ® contains PA) is

(i) @ is consistent: no contradiction ¢ A —1¢p can
be proved from @ (Con ®);

(i) Membership of strings in @ is algorithmically
decidable; and

(i) @ has capturability: 1t can capture functions
and relations over N (Cap ®).

Then there is a sentence & st. ® K & and
D ¥ - ¢. (€ isan“undecidable” sentence.)



To prove GI, we shall
allow ourselves ...



The Fixed Point Theorem (FPT)
“The Self-Ascription Theorem” (GSAT)

Assume that @ is a set of arithmetic sentences such
that Cap ®@. Then for every arithmetic formula yw(x)
with one free variable x, there Is an arithmetic
sentence ¢ sit.

O+ ¢ o wiH?)

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”



“| heard there was no free lunch!”

[W]e “would hope that such a deep theorem would have an insightful
proof. No such luck. | am going to write down a sentence ... and verify
that it works. What | won't do Is give you a satisfactory explanation for
why | write down the particular formula that | do. | write down the
formula because Godel wrote down the formula, and Godel wrote down
the formula because, when he played the logic game he was able to see
seven or eight moves ahead, whereas you and | are only able to see one
or two moves ahead. | don't know anyone who thinks he has a fully
satisfying understanding of why the Self-referential Lemma [= FPT]
works. [t has a rabbit-out-of-a-hat quality for everyone.”

—V. McGee, 2002; as quoted in (Salehi 2020)




The Fixed Point Theorem (FPT)

“The Self-Ascription Template Theorem”

Assume that @ is a set of arithmetic sentences such
that Cap ®@. There for every arithmetic formula y(x)
with one free variable x, there Is an arithmetic
sentence ¢ sit.

O+ ¢ o wiH?)

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”



Ok;soletsdo it ...



Proof: et ® be a set of arithmetic sentences that's a superset of PA, and suppose the
antecedent of (G |holds, i.e. ()—(iii) hold. We must show that there exits an arithmetic
sentence s.t. neither it nor its negation can be proved from @. In homage to Godel, we label
this sentence ‘&

For reductio, assume the opposite: that for very arithmetic sentence ¢, either @ - ¢ or
D - ¢

Next, let's use the formula (V) to capture provability in @, where the variable v is a
placeholder ready to receive the Gddel numeral A2 of a formula ¢ that's proved. We thus
have:

GlL.1) ®F aR?)iff®F ¢.

“I'm not
provable

Now we bring on stage Gddel’s self-ascribing sentence &, via his o D

Self-Ascription Template Theorem (SATL); specifically, we have: |
(Gl2) ®F € —a(i?).

We have two cases to consider; just like what we did in the original Liar Paradox. The first is

that & is provable from ®@; suppose this holds. Then from (1) right-to-left, and modus ponens
= conditional elim, with left-to-right (by biconditional elimination) on (3) — contradiction!

How about the second case, viz. that @ = &7 With this and (3) by modus tollens and
simplification of a double negation we deduce ® F z(7%), which with (1) by biconditional
elimination vields ® + & — contradiction!, which is ruled out by the assumption that @ is
consistent. QED




“Silly abstract nonsense! There
aren’t any concrete examples of &!”
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The Goodstein Sequence goes to zero!



Pure base n representation of
a number r

® Represent r as only sum of powers of n in
which the exponents are also powers of n, etc.

+29)

266 = 22(220 1 9(2* +2%) | 92°



Grow Function

Growg(n) :

1. Take the pure base k representation of n

2. Replace all k by k + 1. Compute the number obtained.

3. Subtract one from the number



Example of Grow

Grows(19)

20
19 =22° 92 4 90
33" 30 50
3 +3° +3
38%" 133 £30 1

7625597484990



Goodstein Sequence

® For any natural number m

m
Grows(m)
Grows(Grows(m))

Grows(Grows(Grows(m))),
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Sample Values




Sample Values




Sample Values




Sample Values




Sample Values

2 | 0
3 3 ) | 0
26 41 60 83 109 139 11327

(96th term)




Sample Values

2 2 I 0
3 3 3 2 I 0

11327
4 26 41 60 83 109 139 (96th term)
15 ~10!3 ~10155 | ~102185 | ~1 036306 | 10695975 | Q15151337







This sequence actually goes to zero!



[ Astrologic:

Rational Aliens Will be on the Same “Race Track’!

PAF=TRUE,,/;



[ Astrologic:

Rational Aliens Will be on the Same “Race Track’!

PAF=TRUE,,/;



Astrologic:
Rational Aliens Will be on the Same “Race Track”!

PAF=TRUE,,/;






Med nok penger, kan
logikk lese alle problemer.



