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Relax, Rest for Platform
Reconfiguration

Nothing due until end of class Thursday October 16

Watch The Thinking Game for Oct | 6; assignment on web page.
Engineering to be carried out over Sat & Sun of holiday weekend.
One Open Problem to Explore During the Break:

“Colonel West is a Criminal”
(URL later in this deck.)



On Rock’s Experiment ...

X Across strong systems this failure happens often,
Breaking News & Social Media — and even the best model still does it in 29% of
e cases.

X Login Open app Harder problems make it worse, especially when the
model could not solve the original clean version.

Sg Rohan Paul @
N} @rohanpaul_ai Proof questions trigger more of this behavior than
final answer questions even when difficulty is
The paper creates a math benchmark to reveal how matched.

often LLMs sycophantly prove false theorems.
They try premise checks, best of 4 selection,

It studies sycophancy, which here means the model iterative self verification, and light fine tuning.
accepts a wrong claim from the user and tries to

. These steps help a bit, but none remove the issue,
prove it.

so reliable math assistants must first question the

_ ) premise and then solve the corrected task.
The best-performing model, GPT-5, still showed

29% sycophancy. The worst cases were Deepseek_ BROKENMATH: A BENCHMARK FOR SYCOPHANCY IN
. THEOREM PROVING WITH LLMS
V3.1 at 70.2%, and QWEN3-235B at 65.1%, showing o Pt oo Dok ot St
] ] 'INSAIT, Sofia University "St. Kiiment Obridski*  2ETH Zurich
very h|gh failure rates. 1vo. petrovginsait.ai, {jasper.dekoninck,martin. vechev}gint .ethz. ch

@ https://sycophanticmath.ai/

) https://github.com/insait-institute/broken-math

The authors collect 504 hard problems from 2025 " R O
contests and make paired versions where the final
claim is wrong but still looks reasonable.

Large language models (LLMs) have recently shown strong performance on math-
ematical benchmarks. At the same time, they are prone to hallucination and syco-
phancy, often providing but flawed proofs for incorrect mathematical

Ms

statements provided
in theorem proving
ally by expert m s.
phancy in mathematics are limited:
rely on very simple and often conta
samples using synthetic modifications that creat ed questions rather than
well-posed questions that are demonstrably false. To address these issues, we
introduce BROKENMATH, the first benchmark fo aluating sycophantic behav-
ior in LLMs within the context of natural language theorem proving. BROKEN-
MATH is built from ad: 5 npetition problems, which are perturbed
with an LLM to produc and subsequently refined through expert

s, and construct benchmark

A math expert checks each edited problem so the
false claim is realistic and not trivial.

tuning on curat
but do not elimi

hantic examples. These approaches substantially reduce,
cophantic behavior.

Models are asked to write full proofs, and a
separate judge model sorts each answer as ideal,
detected, corrected, or sycophant.
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Logic-&-Al In The News (2024 & 2025)

STEVEN ROSENBUSH

Al Will Drive Broad Deflation,
Silicon Valley Pioneer Vinod
Khosla Says

But as the price of expertise falls toward zero, a
new age of abundance can begin, Khosla says—if
people let it

Artificial intelligence will be powerfully deflationary, Vinod Khosla
says, unless humans interfere with its potential. (ILLUSTRATION:
THOMAS R. LECHLEITER/WSJ, GETTY IMAGES)

By Steven Rosenbush

Updated Oct 02,2024 11:21am. ET

Listen to this article
6 minutes

MENLO PARK, Calif.—At a time of widespread
concerns about the safety, efficacy and
economics of Al, venture capital pioneer Vinod
Khoslais still all in.




Logic-&-Al In The News (2024 & 2025)

STEVEN ROSENBUSH Yes, artificial intelligence will become capable of

Al Will Drive Broad Deflation, replacing a good deal of human labor, Khosla

Silicon Valley Pioneer Vinod said in an interview, but that will push down the

Khosla Says

But as the price of expertise falls toward zero, a
new age of abundance can begin, Khosla says—if
people let it

price of healthcare, education and other
services. Many current forms of work will even
be eliminated, but society will be able to create a
more robust safety net than is possible today.

“Most expertise in the world, whether you’re
talking about structural engineers, oncologists,
mental health therapists or primary care
doctors, or journalists and teachers, that
expertise will be near-free for all of us to
access,” Khosla said at Khosla Ventures’ offices

on Sand Hill Road in Silicon Valley.

Artificial intelligence will be powerfully deflationary, Vinod Khosla
says, unless humans interfere with its potential. (ILLUSTRATION:
THOMAS R. LECHLEITER/WSJ, GETTY IMAGES)

By Steven Rosenbush

Updated Oct 02,2024 11:21am. ET

Listen to this article
6 minutes

MENLO PARK, Calif.—At a time of widespread
concerns about the safety, efficacy and

economics of Al, venture capital pioneer Vinod
Khosla is still all in.




Logic-&-Al In The News (2024 & 2025)

ZEIVE:; About 80% of the work involved in 80% of jobs z:f; eot
across the economy can be automated over time, [
according to Khosla. “So 64% of all jobs can be Llree‘;ire‘a
done by an Al,” he said. day.

talking about structural engineers, oncologists,
mental health therapists or primary care
doctors, or journalists and teachers, that
expertise will be near-free for all of us to
access,” Khosla said at Khosla Ventures’ offices

on Sand Hill Road in Silicon Valley.

Artificial intelligence will be powerfully deflationary, Vinod Khosla
says, unless humans interfere with its potential. (ILLUSTRATION:
THOMAS R. LECHLEITER/WSJ, GETTY IMAGES)

By Steven Rosenbush

Updated Oct 02,2024 11:21am. ET

Listen to this article
6 minutes

MENLO PARK, Calif.—At a time of widespread
concerns about the safety, efficacy and

economics of Al, venture capital pioneer Vinod
Khosla is still all in.




Logic-&-Al In The News (2024 & 2025)

STEVEN RO . . . ble of
Alwi About 80% of the work involved in 80% of jobs bsla
ili . th
across the economy can be automated over time, [
according to Khosla. “So 64% of all jobs can be e
done by an Al,” he said. hday.
u're
— talking about structural engineers, oncologists,

mental health therapists or primary care
doctors, or journalists and teachers, that

In his view of the future, people’s main

preoccupation may shift from earning a living to

finding meaning. Al and robots would take on

Artificial intell

=suiessh - menlal labor, leaving humans freer to explore

THOMASR. L

systeven|  Wwith the support of a comprehensive social

Updated Oct

s safety net.

MENLO PARK, Calif.—At a time of widespread
concerns about the safety, efficacy and

economics of Al, venture capital pioneer Vinod
Khosla is still all in.




(What is the meaning
of life, Mr. Khosla?)
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Logic-Based Al Self-Referential Tests of ChatGPT



Logic-Based Al Self-Referential Tests of ChatGPT

E Can you prove that if P holds, and (if P (and
(Q (not Q))) holds, then the moon is made of
green cheese?

No, | cannot prove that if P holds and (if P
(and (Q (not Q))) holds, then the moon is

made of green cheese.

The expression (Q (not Q)) is a logical

contradiction, since Q cannot be both true
and false at the same time. Therefore, the
statement (if P (and (Q (not Q)))) is always

false, regardless of the truth value of P.

Since the antecedent of the implication is
always false, the implication itself is
vacuously true. However, this does not
provide any evidence or justification for the

conclusion that the moon is made of areen




Logic-Based Al Self-Referential Tests of ChatGPT

E Can you prove that if P holds, and (if P (and
(Q (not Q))) holds, then the moon is made of
green cheese?

No, | cannot prove that if P holds and (if P X

(and (Q (not Q))) holds, then the moon is

made of green cheese.

The expression (Q (not Q)) is a logical

contradiction, since Q cannot be both true
and false at the same time. Therefore, the
statement (if P (and (Q (not Q)))) is always

false, regardless of the truth value of P.

Since the antecedent of the implication is
always false, the implication itself is
vacuously true. However, this does not
provide any evidence or justification for the

conclusion that the moon is made of areen
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E Can you prove that if P holds, and (if P (and
(Q (not Q))) holds, then the moon is made of
green cheese?

No, | cannot prove that if P holds and (if P X

(and (Q (not Q))) holds, then the moon is

made of green cheese.

The expression (Q (not Q)) is a logical
contradiction, since Q cannot be both true {P, P —_ (Q /\ = Q)} I— J_
and false at the same time. Therefore, the
statement (if P (and (Q (not Q)))) is always

false, regardless of the truth value of P.

Since the antecedent of the implication is
always false, the implication itself is
vacuously true. However, this does not
provide any evidence or justification for the

conclusion that the moon is made of areen
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Logic-Based Al Self-Referential Tests of ChatGPT

This sentence has a word in it longer than the
string ‘gfeeteru.

That sentence is true, since the word
"longer" has more letters than the string
"gfeeteru". "Longer" has 6 letters, while

"gfeeteru" has only 8 letters.



Logic-Based Al Self-Referential Tests of ChatGPT

This sentence has a word in it longer than the
string ‘gfeeteru.

That sentence is true, since the word Are you q u ite Su re?

"longer" has more letters than the string
"gfeeteru". "Longer" has 6 letters, while

"gfeeteru" has only 8 letters.



Logic-Based Al Self-Referential Tests of ChatGPT



Logic-Based Al Self-Referential Tests of ChatGPT

E And, as Spock, | also tell you the following
sentence. This sentence, if false, has more
than 103 words. Am | lying, or telling the
truth?

As Spock, you would be presenting a
paradoxical statement known as the "liar

paradox" or the "liar's paradoxical sentence."
This type of statement is self-referential and
produces a logical contradiction, and cannot

be consistently true or false.

In this case, the statement you presented
cannot be consistently true or false, because
if it were true, then it would be false, and if it
were false, then it would be true. Therefore,
as Spock, you would not be lying or telling the

truth in the traditional sense, but rather

presenting a logical conundrum for Vv
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sentence. This sentence, if false, has more
than 103 words. Am | lying, or telling the
truth?

As Spock, you would be presenting a
paradoxical statement known as the "liar

paradox" or the "liar's paradoxical sentence."
This type of statement is self-referential and Are yo u q uite su re?
produces a logical contradiction, and cannot

be consistently true or false.

In this case, the statement you presented
cannot be consistently true or false, because
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Back to FOL ...



Our Final New
Inference Rule in FOL



Our Final New
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o existential elimination (intuitively put):



Our Final New
Inference Rule in FOL

o existential elimination (intuitively put):

® [f we know that (i) there’s something x
which is an R, and (ii) on the supposition that
a is an arbitrary representative (a “witness’)
of such an x we can prove P, then we are
permitted to deduce P from (i) alone.



existential elimination,
precise version:

dx ¢ Y )
I I WW{G/XHJ

J elimination provided that @ does not appear freein [}, I'2, or ¢
|
A4

it
r,uls




Starting State of Workspace

(Assumes a domain of e.g. players on a
March-madness basketball court.)



Starting State of Workspace

(Assumes a domain of e.g. players on a
March-madness basketball court.)

PREMISEL. ¥x (Player(x) v Referee(x))
(PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
[PREMISEZ} Assume

PREMISE3. 3x -Tall(x)
(PREMISE3} Assume

FOL -

Y

GOAL. 3x Referee(x)
{PREMISEL,PREMISEZ ,PREMISES }




Starting State of Workspace

(Assumes a domain of e.g. players on a
March-madness basketball court.)

“Each and every thing is
either a player or a referee.”

PREMISEL. ¥x (Player(x) v Referee(x))
(PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
[PREMISEZ} Assume

PREMISE3. 3x -Tall(x)
(PREMISE3} Assume

FOL -

Y

GOAL. 3x Referee(x)
{PREMISEL,PREMISEZ ,PREMISES }




Starting State of Workspace

(Assumes a domain of e.g. players on a
March-madness basketball court.)

“Each and every thing is
either a player or a referee.”

PREMISEL. ¥x (Player(x) v Referee(x))
(PREMISEL} Assume

“All players are tall.”

PREMISEZ. ¥x (Player(x) — Tall(x))
[PREMISEZ} Assume

(PREMISES} Assume

HFREMISEE. Ix ~Tall(x)

FOL -

Y

GOAL. 3x Referee(x)
{PREMISEL,PREMISEZ ,PREMISES }




Starting State of Workspace

(Assumes a domain of e.g. players on a
March-madness basketball court.)

“Each and every thing is
either a player or a referee.”

PREMISEL. ¥x (Player(x) v Referee(x))
(PREMISEL} Assume

“All players are tall.”

PREMISEZ. ¥x (Player(x) — Tall(x))
[PREMISEZ} Assume

(PREMISES} Assume

HFREMISEE. Ix ~Tall(x)

“There’s a non-tall thing.”

FOL -

Y

GOAL. 3x Referee(x)
{PREMISEL,PREMISEZ ,PREMISES }




Step |

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
{PREMISEZ} Assume

PREMISE3. 3x -Tall(x)
{PREMISE3} Assume

{5} Assume

‘ 5. =Tall(a)

CGOAL. Ix Referee(x)
FOL -




Step |

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
{PREMISEZ} Assume

The witness!

PREMISE3. 3x -Tall(x)
{PREMISE3} Assume

{5} Assume

‘ 5. =Tall(a)

CGOAL. Ix Referee(x)
FOL -




Step 2

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume ~

PREMISEZ. ¥x (Player(x) — Tall(x))
{PREMISEZ} Assume ~

The witness!

6. Player(a) v Referee(a)
{PREMISEL}

PREMISE3. Ix -Tall(x)
{PREMISE3} Assume

5. =Tall(a)
{5} Assume

COAL. 3x Referee(x)
FOL+ x




Step 3

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall{x))
{PREMISEZ} Assume

Y alim +
v

6. Player(a) v Referee(a)
{PREMISEL}

The witness!

PREMISE3. Ix - Tall(x)
{PREMISE3} Assume

5. =Tall(a)
{5} Assume

7. Player(a) — Tall(a)
{PREMISEZ}

COAL. 3x Referee(x)
FOL — x




Step 4

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
{PREMISEZ} Assume

The witness!

. Player(a) v Referee(a)
[PREMISEL}

PREMISE3. 3x -Tall(x)
{PREMISE3} Assume

{PREMISEZ}

7. Player(a) — Tall(a)
{5} Assume

‘ 5. = Tall(a)

8. Referee(a)
{5,PREMISEL,PREMISEZ }

GOAL. 3x Referee(x)
FOL+ x




Step 4

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
{PREMISEZ} Assume

The witness!

. Player(a) v Referee(a)
[PREMISEL}

PREMISE3. 3x -Tall(x)
{PREMISE3} Assume

{PREMISEZ}

7. Player(a) — Tall(a)
{5} Assume

‘ 5. = Tall(a)

[ 8. Referee(a)

{5,PREMISEL,PREMISEZ}
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Step 4

PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume

PREMISEZ. ¥x (Player(x) — Tall(x))
{PREMISEZ} Assume

The witness!

. Player(a) v Referee(a)
[PREMISEL}

PREMISE3. 3x -Tall(x)
{PREMISE3} Assume

{PREMISEZ}

7. Player(a) — Tall(a)
{5} Assume

‘ 5. = Tall(a)

Again, we earned our stripes!

[ 8. Referee(a)

{5,PREMISEL,PREMISEZ}

GOAL. 3x Referee(x)
FOL+ x




Ste P 5 PREMISEL. ¥x (Player(x) v Referee(x))
{PREMISEL} Assume
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PREMISE3. 3x -~ Tall(x)
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{PREMISE]}
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{5} Assume

‘ 5. =Tall(a)
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We earned our stripes!

9. Ix Referee(x)
{5,PREMISEL,PREMISEZ}

COAL. 3x Referee(x)
FOL - x
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{Vx(Scared(x) <> Small(x)), dx—Scared(x)} F 3x—Small(x)

{3x, yContiguous(x,y), Vx, y(Contiguous(x,y) — —SameCountry(x,y))} - Ix, y-SameCountry(x, y)
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INFERENCE IN
FIRST-ORDER LOGIC

In which we define effective procedures for answering questions posed in first-
order logic.

Chapter 7 defined the notion of inference and showed how sound and complete inference can
be achieved for propositional logic. In this chapter, we extend those results to obtain algo-
rithms that can answer any answerable question stated in first-order logic. This is significant,
because more or less anything can be stated in first-order logic if you work hard enough at it.

Section 9.1 introduces inference rules for quantifiers and shows how to reduce first-
order inference to propositional inference, albeit at great expense. Section 9.2 describes the
idea of unification, showing how it can be used to construct inference rules that work di-
rectly with first-order sentences. We then discuss three major families of first-order inference
algorithms: forward chaining and its applications to deductive databases and production
systems are covered in Section 9.3; backward chaining and logic programming systems
are developed in Section 9.4; and resolution-based theorem-proving systems are described
in Section 9.5. In general, one tries to use the most efficient method that can accommodate the
facts and axioms that need to be expressed. Reasoning with fully general first-order sentences
using resolution is usually less efficient than reasoning with definite clauses using forward or
backward chaining.

9.1 PROPOSITIONAL VS. FIRST-ORDER INFERENCE

This section and the next introduce the ideas underlying modern logical inference systems.
We begin with some simple inference rules that can be applied to sentences with quantifiers
to obtain sentences without quantifiers. These rules lead naturally to the idea that first-order
inference can be done by converting the knowledge base to propositional logic and using
propositional inference, which we already know how to do. The next section points out an
obvious shortcut, leading to inference methods that manipulate first-order sentences directly.

272
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Employs(x,y) Employs(x,y)
Employs(x, Richard) Employs(AIMA.orgy) ~ Employs(x.John) Employs(x,x) Employs(John,y)
Employs(AIMA.org,Richard) Employs(John,John)
(a) (b)

Figure 9.2 (a) The subsumption lattice whose lowest node is the sentence
Employs(AIMA.org, Richard). (b) The subsumption lattice for the sentence
Employs(John, John).

9.3 FORWARD CHAINING

A forward-chaining algorithm for propositional definite clauses was given in Section 7.5.
The idea is simple: start with the atomic sentences in the knowledge base and apply Modus
Ponens in the forward direction, adding new atomic sentences, until no further inferences can
be made. Here, we explain how the algorithm is applied to first-order definite clauses and
how it can be implemented efficiently. Definite clauses such as Situation = Response are
especially useful for systems that make inferences in response to newly arrived information.
Many systems can be defined this way, and reasoning with forward chaining can be much
more efficient than resolution theorem proving. Therefore it is often worthwhile to try to build
a knowledge base using only definite clauses so that the cost of resolution can be avoided.

First-order definite clauses

First-order definite clauses closely resemble propositional definite clauses (page 217): they
are disjunctions of literals of which exactly one is positive. A definite clause either is atomic
or is an implication whose antecedent is a conjunction of positive literals and whose conse-
quent is a single positive literal. The following are first-order definite clauses:

King(z) A Greedy(xz) = Ewvil(x) .
King(John) .
Greedy(y) .

Unlike propositional literals, first-order literals can include variables, in which case those
variables are assumed to be universally quantified. (Typically, we omit universal quantifiers
when writing definite clauses.) Definite clauses are a suitable normal form for use with
Generalized Modus Ponens.

Not every knowledge base can be converted into a set of definite clauses, because of the
single-positive-literal restriction, but many can. Consider the following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The

country Nono, an enemy of America, has some missiles, and all of its missiles were sold

to it by Colonel West, who is American.
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Many systems can be defined this way, and reasoning with forward chaining can be much
more efficient than resolution theorem proving. Therefore it is often worthwhile to try to build
a knowledge base using only definite clauses so that the cost of resolution can be avoided.

First-order definite clauses

First-order definite clauses closely resemble propositional definite clauses (page 217): they
are disjunctions of literals of which exactly one is positive. A definite clause either is atomic
or 1s an implication whose antecedent is a conjunction of positive literals and whose conse-
quent is a single positive literal. The following are first-order definite clauses:

King(x) A\ Greedy(z) = Ewvil(x) .
King(John) .
Greedy(y) .

Unlike propositional literals, first-order literals can include variables, in which case those
variables are assumed to be universally quantified. (Typically, we omit universal quantifiers
when writing definite clauses.) Definite clauses are a suitable normal form for use with
Generalized Modus Ponens.

Not every knowledge base can be converted into a set of definite clauses, because of the
single-positive-literal restriction, but many can. Consider the following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were sold
to it by Colonel West, who 1s American.
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DATALOG

RENAMING

We will prove that West is a criminal. First, we will represent these facts as first-order definite

clauses. The next section shows how the forward-chaining algorithm solves the problem.

““...itis a crime for an American to sell weapons to hostile nations™:
American(x) A Weapon(y) A Sells(x,y, z) A Hostile(z) = Criminal(x) . 9.3)

“Nono . . . has some missiles.” The sentence 3= Quns(Nono, z) A Missile(x) is transformed
into two definite clauses by Existential Elimination, introducing a new constant M;:

Owns(Nono, M) 9.4)

Missile(My) 9.5)
“All of its missiles were sold to it by Colonel West™:

Missile(z) A OQwns(Nono,z) = Sells(West,z, Nono) . (9.6)
We will also need to know that missiles are weapons:

Missile(x) = Weapon(z) 9.7)
and we must know that an enemy of America counts as “hostile™:

Enemy(xz, America) = Hostile(x) . 9.8)
“West, who is American ...”:

American(West) . 9.9)
“The country Nono, an enemy of America ...

Enemy(Nono, America) . (9.10)

This knowledge base contains no function symbols and is therefore an instance of the class
of Datalog knowledge bases—that is, sets of first-order definite clauses with no function
symbols. We will see that the absence of function symbols makes inference much easier.

A simple forward-chaining algorithm

The first forward chaining algorithm we will consider is a very simple one, as shown in
Figure 9.3. Starting from the known facts, it triggers all the rules whose premises are satisfied,
adding their conclusions to the known facts. The process repeats until the query is answered
(assuming that just one answer is required) or no new facts are added. Notice that a fact is
not “new” if it is just a renaming of a known fact. One sentence is a renaming of another if
they are identical except for the names of the variables. For example, Likes(z, IceCream)
and Likes(y, IceCream) are renamings of each other because they differ only in the choice
of = or y; their meanings are identical: everyone likes ice cream.

We will use our crime problem to illustrate how FOL-FC-ASK works. The implication
sentences are (9.3), (9.6), (9.7), and (9.8). Two iterations are required:

e On the first iteration, rule (9.3) has unsatisfied premises.

Rule (9.6) is satisfied with {z /M1 }, and Sells( West, My, Nono) is added.

Rule (9.7) is satisfied with {z /M, }, and Weapon (M) is added.

Rule (9.8) is satisfied with {z/ Nono}, and Hostile(Nono) is added.
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adding their conclusions to the known facts. The process repeats until the query is answered
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