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Theorem ACU: In a collaborative situation involving agents a (as the “trustor”)
and a’' (as the “trustee”), if @’ is at once both autonomous and ToM-creative, a’ is
untrustworthy from an ideal-observer o’s viewpoint, with respect to the action-goal pair
(a,7) in question.

Proof: Let a and a’ be agents satisfying the hypothesis of the theorem in an arbitrary
collaborative situation. Then, by definition, a # a’ desires to obtain some goal v in part
by way of a contributed action «y from a’, @’ knows this, and moreover @’ knows that
a believes that this contribution will succeed. Since a’ is by supposition ToM-creative,
a’ may desire to surprise a with respect to a’s belief regarding a'’s contribution; and
because a’ is autonomous, attempts to ascertain whether such surprise will come to
pass are fruitless since what will happen is locked inaccessibly in the oracle that decides
the case. Hence it follows by TRANS that an ideal observer o will regard a’ to be
untrustworthy with respect to the pair (a,) pair. QED
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4.4.4 D=SDL (=‘Standard Deontic Logic’)

We here introduce what is known as ‘Standard Deontic Logic’ (SDL), which in Slate
is the system D. Deontic logic is the sub-branch of logic devoted to formalizing the
fundamental concepts of morality; for example, the concepts of obligation, permissi-
bility, and forbiddenness. The first of these three concepts can apparently serve as
a cornerstone, since to say that ¢ (a formulae representing some state-of-affairs) is
permissible seems to amount to saying that it’s not obligatory that it not be the case
that ¢ (which shows permissibility can be defined in terms of obligation), and to
say that ¢ is forbidden would seem to amount to it being obligatory that it not be
the case that ¢ (which of course appears to show that forbiddenness buildable from
obligation). This interconnected trio of ethical concepts is a triad explicitly invoked
and analyzed since the end of the 18" century, and the importance of the triad even
to modern deontic logic would be quite hard to exaggerate.”
SDL is traditionally axiomatized by the following:'"

SDL

TAUT All theorems of the propositional calculus.
OB-K O(¢ —y)—(0¢ —0Y)

OB-D ©¢ —»—-0-¢

MP If+¢ andt ¢ — iy, thentk ¢

OB-NEC If- ¢ then-®¢
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OB-RE If ¢ «— ¢, then©¢ « Q.

0B-K. Ly — @) — (U — Oy) OB-D. O — -~
De-v =01 D v =]
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{Theoreml} Assume /
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-
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J

rTheorem4. (O A Og) — L(p A l.l))j
{Theorem4} Assume /

- -

Figure 4.7: The Initial Configuration Upon Opening the File SDL.s1t



4.4.4.1 Chisholm’s Paradox and SDL

There are a host of problems that, together, constitute what is probably a fatal threat
to SDL as a model of human-level ethical reasoning. We discuss in the present
section the first of these problems to hit the “airwaves”: Chisholm’s Paradox (CP)
(Chisholm 1963). CP can be generated in Slate, you we shall see. But before we get to
the level of experimentation in Slate, let’s understand the scenario that Chisholm’s
imagined.

Chisholm’s clever scenario revolves around the character Jones.!! It’s given that
Jones is obligated to go to assist his neighbors, in part because he has promised to
do so. The second given fact is that it's obligatory that, if Jones goes to assist his
neighbors, he tells them (in advance) that he is coming. In addiiton, and this is the
third given, if Jones doesn'’t go to assist his neighbors, it's obligatory that he not tell

1TWe change some particulars to ease exposition; generally, again, follow, the SEP entry on deontic logic
(recall footnote 10). The core logic mirrors (Chisholm 1963), the original publication.

CHAPTER 4. PROPOSITIONAL MODAL LOGIC 124

them that he is coming. The fourth and final given fact is simply that Jones doesn't
go to assist his neighbors. (On the way to do so, suppose he comes upon a serious
vehicular accident, is proficient in emergency medicine, and (commendably!) seizes
the opportunity to save the life (and subsequently monitor) of one of the victims in
this accident.) These four givens have been represented in an obvious way within
four formula nodes in a Slate file; see Figure 4.8. (Notice that O is used in place of
®.) The paradox arises from the fact that Chisholm’s quartet of givens, which surely
reflect situations that are common in everyday life, in conjunction with the axioms of
SDL, entail outright contradictions (see Exercise 2 for D = SDL, in §4.4.4.2).
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The Free Choice Permission Paradox (Ross)

1. "You may either sleep on the sofa bed or the guest bed."
{1} Assume v/

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."
{2} Assume v




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."
{2} Assume v




The Free Choice Permission Paradox (Ross)

1'. O(sofa-bed v guest-bed)
{1'} Assume v

1. "You may either sleep on the sofa bed or the guest bed."
{1} Assume v/

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/

COMMENT. "We can prove:"
{COMMENT} Assume v

THM 5. O — O v p)
DF VvV «[]




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

{NEW SCHEMA?} Assume v/

\

[NEW SCHEMA?. O( v 1) — (G@ A O)

COMMENT. "We can prove:"
{COMMENT} Assume v

THM 5.;>:p/—;é>((p v q))] (HOW’)




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/

COMMENT. "We can prove:"||THM 5. O — O(p v ) ),
{COMMENT} Assume v D/ o] HOW.

8. G /

{8} Assume v




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/

COMMENT. "We can prove:"||THM 5. O — O(p v ) ),
{COMMENT} Assume v D/ o] HOW.

8. G /
{8} Assume v/ PCL v




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/

COMMENT. "We can prove:"||THM 5. O — O(p v ) ),
{COMMENT} Assume v D/ o] HOW.

8. G /
{8} Assume v/ PCL v

10. G A OY
{8,NEW SCHEMA?}
T




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/

COMMENT. "We can prove:"||THM 5. O — O(p v ) ),
{COMMENT} Assume v D/ o] HOW.

8. G /
{8} Assume v/ PCL v

10. G A OY
{8,NEW SCHEMA?}

|PCI—/|

Y
[ 11. Oy

{8,NEW SCHEMA?}
|




The Free Choice Permission Paradox (Ross)

1'. &(sofa-bed v guest—bed)]

{1't Assume v/ {1} Assume v/

1. "You may either sleep on the sofa bed or the guest bed."]

DA

\ 4

2'. Osofa-bed A Oguest—bed]
{1

{2} Assume v

2. "Therefore: You may sleep on the sofa bed, and you may sleep on the guest bed."]

NEW SCHEMA?. O(p v ) — (O A OP)
{NEW SCHEMA?} Assume v/

COMMENT. "We can prove:"||THM 5. O — O(p v ) ),
{COMMENT} Assume v D/ o] HOW.

8. G /
{8} Assume v/ PCL v

10. G A OY
{8,NEW SCHEMA?}

|PCI—/|

Y
[ 11. Oy

{8,NEW SCHEMA?}

Etro ./|

y

12. S = OY
{NEW SCHEMA?}

COMMENT. Absurd!
{COMMENT} Assume v







“Computational logician,
sorry, back to your drawing
board to find a logic that
works with The Four Steps!”



