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A1 (� _ �) ! �
A2 �! (� _  )
A3 (� _  ) ! ( _ �)
A4 ( ! �) ! ((� _  ) ! (� _ �))

All instances of these schemata are true no matter 
what the input (true or false).  (Agreed?)  And indeed 
every single formula in the propositional calculus that 
is true no matter what the permutation (as shown in 
a truth table), can be proved (somehow) from these 
four axioms (using the rules of inference given earlier 
in our semester).  This, Gödel knew, and could use.



Completeness Theorem for 
The Propositional Calculus

Let � be a set {�1,�2, . . .} of formulae in the the propositional calculus.
Then either all of � are satisfiable, or the conjunction up to and including
the point k (i.e. �1 ^ �2 ^ . . . ^ �k) of failure is refutable.

<latexit sha1_base64="xITUKzHvbV/kBsUW/FJHtg5wTB8="></latexit>
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Show under doc cam that we can build the scenario if we don’t 
get a closed branch (the scenario is an infinite branch), or we 
can use resolution/the OraclePC to obtain a contradiction once 
we have supposed for indirect proof that the conjunction holds.



But the assumption that 
there is an infinite branch is 
based on König’s Lemma …



Toward König’s Lemma as Train Travel



“To infinity and beyond!”



König’s Lemma (train-travel version)

In a one-way train-travel map with finitely many 
options leading from each station, if there are 
partial paths forward of every finite length, 
there is an infinite path (= a path “to infinity”).
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Exercise 2:  
Is there an algorithm for traveling this way?

No.  This strategy for travel is beyond 
the reach of standard computation.

(Does it not then follow, assuming 
that humans can find and “use” a 
provably correct strategy for this 
travel, that humans can’t be 
fundamentally computing machines?)



Proving the Lemma
(that there is an infinite branch)

Proof:  We are seeking to prove that there is an infinite path (= that you can keep 
going forward forever = that the number of your stops forward are the size of Z+).  

To begin, assume the antecedent of the theorem (i.e. that, (1), there are finitely many 
options leading from each station, and that, (2), in the map there are partial paths 
forward of every finite size).

Now, you are standing at Penn Station (S1), facing k options.  At least one of these 
options must lead to partial paths of arbitrary size (the size of any m in Z+).  (Sub-
Proof:  Suppose otherwise for indirect proof.  Then there is some positive integer n 
that places a ceiling on the size of partial paths that can be reached.  But this violates 
(2) — contradiction.)  Proceed to choose one of these options that lead to partial 
paths of arbitrary size.  You are now standing at a new station (S2), one stop after 
Penn Station.  At least one of these options must lead to partial parts of arbitrary 
size (the size of any m in Z+).  (Sub-Proof:  Suppose otherwise for indirect proof 
…)

Since you can iterate this forever, you’ll be on an infinite trip to infinity!  Buzz will be 
happy.



Simple Buzz-Lightyear-Like Branch

<doc cam>
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But how’d he do it for FOL??

Arbitrary � of L1 to Q to 8x9y�(x, y) to �(a, b) to what we’ve seen!
<latexit sha1_base64="n+BILSK+9FCh0SHo/5zw7GWMYoQ="></latexit>
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Appendices …



So what would be a specific g*?  A 
truth of arithmetic that you can’t 
move from the axioms of arithmetic?!?
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So what would be a specific g*?  A 
truth of arithmetic that you can’t 
move from the axioms of arithmetic?!?

That the Goodstein Sequence eventually reaches zero!

Here you go:



Goodstein Sequence;
Goodstein’s Theorem ...



Pure base n representation of 
a number r

• Represent r as only sum of powers of n in 
which the exponents are also powers of n etc



Grow Function



Example of Grow



Goodstein Sequence
• For any natural number m
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4 Authors Suppressed Due to Excessive Length

Definition 1 (bn(r)) The base n representation of a number r, bn(r), is a notation in

which r is represented as the sum of powers of n and where the exponents are also

powers of n, etc. Example: 266 = 22(220
+20)

+2(220
+20) +220

Definition 2 (Growk(n) :) Take the pure base k representation of n. Replace all k by

k+1. Compute the number obtained. Subtract one from the number. Example: b2(19) =

22220

+220
+20

, therefore

Grow2(19) = 33330

+330
+30 �1 = 333

+3 = 7625597484990

Definition 3 (The Goodstein Sequence for m) For any natural number, the Goodstein

sequence for m is

m,
Grow2(m),
Grow3(Grow2(m)),
Grow4(Grow3(Grow2(m))), . . .

Some example values are shown in Figure 1

Fig. 1. Goodstein sequences for m with m 2 {2,3,4,5}.
Example Values

m
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4 4 26 41 60 83 109 139 ... 11327 
(96th term)

...

5 15 ~1013 ~10155 ~102185 ~1036306 10695975 1015151337 ...

Theorem 1 (Goodstein’s Theorem). For all natural numbers, the Goodstein sequence

reaches zero after a finite number of steps.

Theorem 2 (Unprovability of Goodstein’s Theorem). Goodstein’s theorem is not

provable in Peano Arithmetic (PA) (or any equivalent theory of arithmetic).

All known proofs of Goodstein’s Theorm use infinitary constructs one way or an-
other. The proofs either require infinite sets (beyond finitary arithmetic theories such as
PA), or the proofs require non-finitary rules such as the w-rule.
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Example Values

m

2 2 2 1 0

3 3 3 3 2 1 0

4 4 26 41 60 83 109 139 ... 11327 
(96th term)

...

5 15 ~1013 ~10155 ~102185 ~1036306 10695975 1015151337 ...

Theorem 1 (Goodstein’s Theorem). For all natural numbers, the Goodstein sequence

reaches zero after a finite number of steps.

Theorem 2 (Unprovability of Goodstein’s Theorem). Goodstein’s theorem is not

provable in Peano Arithmetic (PA) (or any equivalent theory of arithmetic).

All known proofs of Goodstein’s Theorm use infinitary constructs one way or an-
other. The proofs either require infinite sets (beyond finitary arithmetic theories such as
PA), or the proofs require non-finitary rules such as the w-rule.So, Gödel was right, empirically!

We have in GT a truth of 
elementary arithmetic that we can’t 
prove from elementary arithmetic!



Could a computing machine get this?? ...



Govindarajulu, N.; Licato, J.; Bringsjord, S. 2013. Small Steps Toward Hypercomputation via 
Infinitary Machine Proof Verification and Proof Generation. In Proceedings of UCNC 2013. Pdf

http://link.springer.com/chapter/10.1007/978-3-642-39074-6_11
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Ordinal Numbers …
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In order to produce a rationally compelling proof 
of any true sentence S formed from the symbol set 
of the language of arithmetic, but independent of 
PA, it’s necessary to deploy concepts and 
structures of an irreducibly infinitary nature.



Yet, Conjecture (C) 
(see “Isaacson’s Conjecture”)

In order to produce a rationally compelling proof 
of any true sentence S formed from the symbol set 
of the language of arithmetic, but independent of 
PA, it’s necessary to deploy concepts and 
structures of an irreducibly infinitary nature.

If this is right, and computing machines can’t 
use irreducibly infinitary techniques, they’re in 
trouble — or:  there won’t be a Singularity.


