Propositional Calculus I: The Formal Language, Rules of Inference (initial), Application to Some Motivating Problems

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Intro to (Formal) Logic I/28/2019

Re-re-re...orientation w.r.t. web pages ...

The Starting Code Purchased in Bookstore Should By Now've Been Used to Register & Subsequently Sign In

How'd We Arrive Here? (Selmer's Leibnizian Whirlwind History of Logic)

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Intro to Logic 1/24/2019

How'd We Arrive Here? (Selmer's Leibnizian Whirlwind History of Logic)

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab Questions/Comments/Objections ...? Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Intro to Logic 1/24/2019

Propositional Calculus I: The Formal Language, Rules of Inference (initial), Application to Some Motivating Problems

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Intro to (Formal) Logic I/28/2019

skipping to ~ p. 34!

skipping to ~ p. 34!

skipping to ~ p. 34!

M. Chi: Self-testers end up being self-made.

skipping to ~ p. 34!

M. Chi: Self-testers end up being self-made.

skipping to ~ p. 34!

M. Chi: Self-testers end up being self-made.

"What category of English sentences does logic focus on?"

The Formal Language

CHAPTER 2. PROPOSITIONAL CALCULUS

Syntax	Formula Type	Sample Representation
P, P ₁ , P ₂ , Q, Q ₁ ,	Atomic Formulas	"Larry is lucky." as L _l
$\neg \phi$	Negation	"Gary isn't lucky." as $\neg L_g$
$\phi_1 \wedge \ldots \wedge \phi_n$	Conjunction	"Both Larry and Carl are lucky." as $L_l \wedge L_c$
$\phi_1 \vee \ldots \vee \phi_n$	Disjunction	"Either Billy is lucky or Alvin is." as $L_b \vee L_a$
$\phi \rightarrow \psi$	Conditional (Implication)	"If Ron is lucky, so is Frank." as $L_r \rightarrow L_f$
$\phi \leftrightarrow \psi$	Biconditional (Coimplication)	"Tim is lucky if and only if Kim is." as $L_t \leftrightarrow L_k$

Table 2.1: Syntax of the Propositional Calculus. Note that ϕ , ψ , and ϕ_i stand for arbitrary formulas.

The Formal Language

CHAPTER 2. PROPOSITIONAL CALCULUS

Syntax	Formula Type	Sample Representation
P, P ₁ , P ₂ , Q, Q ₁ ,	Atomic Formulas	"Larry is lucky." as L _l
$\neg \phi$	Negation	"Gary isn't lucky." as $\neg L_g$
$\phi_1 \wedge \ldots \wedge \phi_n$	Conjunction	"Both Larry and Carl are lucky." as $L_l \wedge L_c$
$\phi_1 \vee \ldots \vee \phi_n$	Disjunction	"Either Billy is lucky or Alvin is." as $L_b \vee L_a$
$\phi \rightarrow \psi$	Conditional (Implication)	"If Ron is lucky, so is Frank." as $L_r \rightarrow L_f$
$\phi \leftrightarrow \psi$	Biconditional (Coimplication)	"Tim is lucky if and only if Kim is." as $L_t \leftrightarrow L_k$

Table 2.1: Syntax of the Propositional Calculus. Note that ϕ , ψ , and ϕ_i stand for arbitrary formulas.

Exercise: Is this language Roger-decidable? Prove it!

"NYS I" Revisited

Given the statements

 $\neg a \lor \neg b$ b c \rightarrow a

which one of the following statements must also be true?

c っb っc h a none of the above

"NYS I" Revisited

Given the statements

 $\neg a \lor \neg b$ b c \rightarrow a

which one of the following statements must also be true?

"NYS 3" Revisited

Given the statements

 $\neg \neg c$ $c \rightarrow a$ $\neg a \lor b$ $b \rightarrow d$ $\neg (d \lor e)$

which one of the following statements must also be true?

¬c e h ¬a all of the above

"NYS 3" Revisited

Given the statements

 $\neg \neg c$ $c \rightarrow a$ $\neg a \lor b$ $b \rightarrow d$ $\neg (d \lor e)$

which one of the following statements must also be true?

"NYS 3" Revisited

Given the statements

--C

 $c \rightarrow a$

 $\neg a \lor b$

 $b \rightarrow d$

 $\neg(d \lor e)$

Show in <u>Hyper</u>Slate that each of the first four options can be proved using the PC entailment oracle.

which one of the following statements must also be true?

