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MHP Defined

Jones has come to a game show, and finds himself thereon selected to play a game on national TV with
the show's suave host, Full Monty. Jones is told correctly by Full that hidden behind one of three closed,
opaque doors facing the two of them is $1,000,000, while behind each of the other two is a feculent,
obstreperous llama whose value on the open market is charitably pegged at $1. Full reminds Jones that
this is a game, and a fair one, and that if Jones ends up selecting the door with $IM behind it, all that
money will indeed be his. (Jones' net worth has nearly been exhausted by his expenditures in traveling
to the show.) Full also reminds Jones that he (= Full) knows what's behind each door, fixed in place until
the game ends.

Full asks Jones to select which door he wants the contents of. Jones says, "Door |." Full then says:
"Hm. Okay. Part of this game is my revealing at this point what's behind one of the doors you didn't
choose. So ...let me show you what's behind Door 3." Door 3 opens to reveal a very unsavory llama.
Full now to Jones: "Do you want to switch to Door 2, or stay with Door 1? You'll get what's behind the
door of your choice, and our game will end." Full looks briefly into the camera, directly.

(P1.1) What should Jones do if he's rational?

(P1.2) Prove that your answer is correct. (Diagrammatic proofs are allowed.)

(P1.3) A quantitative hedge fund manager with a PhD in finance from Harvard zipped this email off to
Full before Jones made his decision re. switching or not: "Switching would be a royal waste of time (and
time is money!). Jones hasn't a doggone clue what's behind Door | or Door 2, and it's obviously a
50/50 chance to win whether he stands firm or switches. So the chap shouldn't switch!" Is the fund
manager right! Prove that your diagnosis is correct.

(P1.4) Can these answers and proofs be exclusively Bayesian in nature?
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DCEC*

Rules of Inference

Syntax
- Ry] [R]
Object | Agent | Self [ Agent | ActionType | Action C Event | C(t,P(a,1,0) = K(a.1,0)) C(1,K(a,1,9) = B(a,1,9))
" Moment | Boolean | Fluent | Numeric Ct,0)1<tp...t<mn (R3] K(a.1,0) [Ra]
3 4
K(ay,11,...K(an,m,9)...) [
action : Agent x ActionType — Action RS]

C(1,K(a,11,01 — ¢2)) = K(a,1p,01) — K(a,13,07)
initially : Fluent — Boolean

[Re)
holds : Fluent x Moment — Boolean C(t,B(a,11.01 = ¢2)) = B(a,1p.41) = B(a,13.07)
happens : Event x Moment — Boolean [R7]

C(1,C(t1,01 = ¢3)) = C(rp,01) = C(13,07)
clipped : Moment x Fluent x Moment — Boolean (k]
R
f ::= initiates : Event x Fluent x Moment — Boolean C(r,Vx. ¢ = dlx—1]) 8 C(t,0] < 0p = 0y — ﬁ¢,l)
terminates : Event x Fluent x Moment — Boolean [R1o]
prior : Moment x Moment — Boolean Cl 01 A nOn = 0] [0 == 0 = )
interval : Moment x Boolean Blar,9) 0w R B(a.r,9) Blat,y) ]
By 1la Blarvno) 116
+ : Agent — Self (et ¥ LY
payoff : Agent x ActionType x Moment — Numeric S(s,h,1,0) Rpo]
B(h,t,B(s,1,0)) 12
. 1(a,1, happens(action(a* ,),1’)) Rpa]
N ; Ri3
P(a,t, happens(action(a® ,0),1))
t:Boolean | =0 [ 9 AW | OV | B(a.1,0) B(a.t.O(a*,t.«b,ha])pms(actian(a*,(x),l/)))
P(a,1,0) | K(a,7,0) | C(1,0) | S(a,b,1,0) | S(a.t,¢) O(a,1,0, happens(action(a*,a),1')) 14l
n= _ - 14
B(a,1,0) | D(a,t,holds(f,t")) | (a,t, happens(action(a* ,a),1")) K(a,t,1(a* 1, happens(action(a* ), 1')))
O(a,1,9, happens(action(a®,),1")) oV [Rys]

O(a.1.9,y) < O(a,1.y,y)
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Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let Il = p, = 2,p, = 3,p3 = 5,...,p,. be
a finite, exhaustive consecutive sequence of prime numbers. Next, let My be
pP1 X p2 X +++ X pi, and set My; to My + 1. Either My, is prime, or not; we thus
have two (exhaustive) cases to consider.

C1 Suppose My, is prime. In this case we immediately have a prime number
beyond any in II — contradiction!

C2 Suppose on the other hand that M{, is not prime. Then some prime p
divides M{,. (Why?) Now, p itself is either in II, or not; we hence have
two sub-cases. Supposing that p is in II entails that p divides M;;. But
we are operating under the supposition that p divides M}, as well. This
implies that p divides 1, which is absurd (a contradiction). Hence the

prime p is outside II.

Hence for any such list II, there is a prime outside the list. That is, there are
infinitely many primes. QED
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“Astonishing” Logic Theorist
Proof @ Dawn of Al

(pV @) = ¢ axiom

(@ V —¢) — —¢ | substitution

(¢ — —¢) — ¢ | a “replacement rule”
(A — —A) — —A | substitution

-0 DN =

At dawn of Al: 10 seconds.

Al of today: vanishingly small amount of time.
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And now, the Theoremhood Decision Problem,
i.e., the Entscheidungsproblem,
(THEOREM¢FoL)
for First-Order Logic (FOL)

Llama(larry) — Jx(Llama(x)) Yes, proof

> >

input output

Not just hard: impossible for a (and this
needed to be invented in the course of
clarifying and solving the problem)
standard computing machine.
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Applying this to ...
The Singularity Question

A:

Premise 1 There will be Al (created by HI and such that AI = HI).
Premise 2 If there is Al there will be AI™ (created by AI).
Premise 3 If there is AI™, there will be AITT (created by AIT).

S There will be AI™™ (= 8 will occur).

(Good-Chalmers Argument)

(Kurzweil is an “extrapolationist.”)



Applying this to ...
The Singularity Question

50, these super-smart machines that will
be built by human-level-smart machines,
they can’t possibly be smart enough to
solve the Entscheidungsproblem. Hence
they’ll be just faster at solving problems
we can routinely solve! What'’s so
super-smart about that?



