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where ¢(x) is open wif with variable x, and perhaps others, free.
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® O Movie Outline - Double-Minded_Man_010316.mvo
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B 1.  TWIRL - DAY
- TWIRL - DAY = E 2. YES, THAT'S HIM - LATER

3. SECOND HOME - LATER
68-year-old Harriet Smith sits with two wrinkled hands firmly on the wheel of her rust-eaten Subaru wagon, staring straight ahead through the top level of
hifocals as she waits serenely at a red light.

Harrietis alone in the car. To herright is another vehicle, also waiting, in this case to make a rightturn; it's a sleek, low-slung, black Camaro.

We are inside the cahin with Harriet. The Subaru's sound system softly plays choral music. Harriet's lips move slightly as she internally sings along,
mouthing a slow aria. Her head weaves slightly side to side, in the rhythm with the music.

Things are calm as can be here inside the car with Harriet. There are a pair of well-worn Bibles on the empty passenger seat beside her, one with a
gold-lettered 'Harriet' on its leather front cover, the other with a matching Joseph'on its front cover.

Harriet's eyes swivel up to the light: still red. We wait with her.

Suddenly there is a piercing SCREECH outside. Harriet jerks her head to the right and we follow her line of sight.
A sleek motorcycle has swerved out of its lane and is now streaking straight for the right side of the Camaro heside Harriet's car. -~
The hike slams with CLANG into the side ofthe Camaro. Its rideris flung up and forward into the air, twirling passed Harriet's windshield.

We now watch from Harriet's POV, in slow motion. The hlack-leather-clad motorcyclist sails by Harriet's windshield, airborne. We see a man's face,
clearly: His elephant-hide skin tells us that he is well beyond middle-age. Yetthick, black curls of youthful hair emerge from under his helmet. The rider

has only one half of a black, bushy, swept-out, waxed mustache. His eyes are weary and grey, and appear to lock with Harriet's for an instant.

We return to normal speed. The bodyis now lying on the incoming lane to the left of Harriet's Subaru, perfectly still on the blacktop, the head twisted into
animpossible angle. Blood seeps from a nostril. Beside the lifeless head, a BMW medallion lies on the pavement, glinting in the sunlight.

1. TWIRL - DAY Step 1 of 3
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1. TWIRL - DAY

68-yearold Hamet Smith sits with two wrinkled hands fimly on the wheel of her rust-eaten Subaru wagon,
staring straight ahead through the top level of bifocals as she waits serenely at a red ight.

Hariet is alone in the car. To her right is another vehicle, also waiting, in this case to make a nght tum; it's
a sleek, low-slung, black Camaro.

We are inside the cabin with Hamet. The Subans's sound system softly plays choral music. Hamief's lips
move siightly as she intemally sings along, mouthing a slow aria. Her head weaves slightly side 1o side,
n the rhythm with the music.

Things are calm as can be here inside the car with Hamiet. There are a par of wellwom Bibles on the
empty passenger seat beside her, one with a goldetiered "Hamet' on its leather front cover, the other with
a matching 'Joseph' on its front cover.

Hamiet's eyes swivel up fo the light: still red. We wait with her.

Suddenly there is a piercing SCREECH outside. Hamiet jerks her head to the right and we follow her ine
of sight.

A sleek motorcycle has swerved out of its lane and is now streaking straight for the nght side of the
Camaro beside Hamiet's car.

The bike slams with CLANG into the side of the Camaro. Its rideris flung up and forward into the ar,
twiding passed Hamiet's windshieid.

We now waich from Hamet's POV, in slow motion. The black-eather-clad motorcyclist sails by Hamief's
windshield, aibome. We see a man's face, clearly: His elephant-hide skin tells us that he is wel beyond
middle-age. Yet thick, black curs of youthful hair ememe from under his helmet. The rider has only one
half of a black, bushy, swept-out, waxed mustache. His eyes are weary and grey, and appear o lock
with Hamiet's for an instant.

We retum to nomnal speed. The body is now lying on the incoming lane to the left of Hamiet's Subaru,
perfectly stil on the blacktop, the head twisted into an impossible angle. Biood seeps from a nostrl
Beside the ifeless head, a BMW medallion lies on the pavement, glinting in the sunlight.
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Godel’s “God Theorem”

Part I
(1) The absence of a positive property is not positive. | premise
(1) The absence of a positive property is not positive; | premise

and if a property isn’t positive, the absence of that
property is.

(2) Any property entailed by a positive property is | premise
itself positive.

(3) Every positive property P is possibly possessed by | (1), (2)
something.

Part 11
(4) Anything that is God has all positive properties. definition

(5) The property of being God is itself a positive prop- | premise

erty.

(6) It’s possible that God exists. (3), (5)
Part III

(7) Positive properties are necessarily positive. premise

(8) A thing = has an essence E if and only if (i) £ is | definition
a property x has; and (ii) for any property P that
x has, z’s having this property P is necessarily
implied by z’s having essence FE.

(9) The property of being God is an essence of any | (8), (7), (4), (1)
thing that has this property.
(9) The property of being God (= ) is an essential | (8), (7), (4), (1)
property of any thing that has G.

Part IV

(10) | A thing has necessary existence if and only if all | definition
the essences that thing has imply that something
exists and has all those essences.

(10) | A thing has necessary existence if and only if all | definition
the essential properties that thing has imply that
something exists and has all those essential prop-

erties.
(11) | Necessary existence is a positive property. premise
(12) | Necessarily, God exists. (6), (9), (10), (11)

QED




Godel’s “God Theorem™ (formalized, machine verified)

(1) | VP [Pos(—P) <> —Pos(P)] premise
(2) | VPL VPy {Pos(P1) NV [Pi(x) — Py(x)] — Pos(Ps)} premise
1 (3) | VP |[Pos(P)— ¢dz P(x)] theorem
(4) | Vx |G(z) <> VP [Pos(P) — P(x)] definition
(5) | Pos(G) premise
1 (6) | OFdz G(x) corollary
(7) | VP [Pos(P) — Pos(P)] premise
(8) | VaVP {FEss(P,xz) <> |[P(x) N\VP' (P'(x) = OVy(P(y) — P'(y))} | definition
1 (9) | Vx [G(x) — FEss(G,x)] theorem
(10) | Vz {NE(x) <> VP |Ess(P,x) — O3y P(y)|} definition
(11) | Pos(NFE) premise
| (12) | O3z G(x) (a.k.a. “Necessarily, God exists.) theorem
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PA| =/

Al Vz(0 # s(x))

A2 VaVy(s(z) =s(y) — x =y)
A3 Vx(x # 0 — dy(x = s(y))

A4 Vr(zx+0=ux)

A5 VaVy(x +s(y) = s(z +y))
A6 Vz(xr x0=0)

AT VaVy(z x s(y) = (v X y) + )

And, every sentence that is the universal closure of an instance of

([9(0) AVz(d(x) — ¢(s(x))] — Vao(x))

where ¢(x) is open witf with variable x, and perhaps others, free.



PA| =/

Al Vz(0 # s(x))

A2 VaVy(s(z) =s(y) — x =y)
A3 Vx(x # 0 — dy(x = s(y))

A4 Vr(zx+0=ux)

A5 VaVy(x +s(y) = s(z +y))
A6 Vz(xr x0=0)

AT VaVy(z x s(y) = (v X y) + )

And, every sentence that is the universal closure of an instance of

([6(0) AVz((2) — ¢(s(2))] — Yad(z)) O

where ¢(x) is open witf with variable x, and perhaps others, free.



Al
A2
A3
A4
A5
A6
AT

VaVy(z x s(y) = (z X y) + )

(if we drop any restriction C, we have full second-order arithmetic.)
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Al Vz(0 # s(x))

A2 VaVy(s(z) =s(y) — x =y)
A3 Vx(x # 0 — dy(x = s(y))

A4 Vrz(x+0=2x)

A5 VaVy(x +s(y) = s(z +y))
A6 Vz(xr x0=0)

AT VaVy(r x s(y) = (x X y) + z)

Induction Axiom VX (| X(0) AVz(X(x) — X(s(x))] — Ve X (x))

(if we drop any restriction C, we have full second-order arithmetic.)



Al Vz(0 # s(x))

A2 VaVy(s(z) =s(y) — x =y)
A3 Vx(x # 0 — dy(x = s(y))
A4 Vz(xr+0=ux)

A5 VaVy(x + s(y) = s(x +y))
A6 Vz(xr x0=0)

AT VaVy(x X s(y) = (x X y) + x)

Induction Axiom VX (| X(0) AVz(X(x) — X(s(x))] — Ve X (x))

Comprehension
Schema ElX(\V/LCX(QZ’) A ¢<QZ‘)) where ¢(QZ‘) c ()

(if we drop any restriction C, we have full second-order arithmetic.)
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Abstract
Godel's proof of his famous

should not be controversial to claim that no computational
reasoning system can, at present, achieve this sort of feat

theorem (G1) has quite \mdevsundably loogbeena
for those.

il itigees compuational sy, Afk

B in establ shmg G1, Godel did something that

y any metric must be classified as stunningly in-

tellgent. We observe tht it has long been under-
nal

11 Proofof G1

Prior work devoted o producing computational systems able.

0 prove G1 have yielded systems able to prove this theorem
y when the distance between this result and the starting

point s quite small. This for example holds for the first (and

Siip bt Lin Paadon (LB and G- ot
that omm himself appreciated and exploited the
relationship. Yet the exact nature of the relation-

i s ithertonotbeen ancovered, by whih we
mean hat the olloving guesion has no bcn -
n a description of LP, ai
Pmen Y iy somebon b 5o by oy

fuce as output a complete and verifiably correct
pmclofGl" Inthis paper, we summarize engineer-
ing that eatails an affirmative answer to this ques-
ton. Our sprosch ses what we call aralogic-
tive reasoning (ADR), which combines ana-
Iegml] and deductive reasoning o produce a full
duictive proat of G rom L. Ot cngieering
uses a form of ADR based on our META-R systerm,
ction between th Lias Sentcace 1n LB
and Godel's Fixed Point Lemma, from which G1
follows quickly.

1 Introduction

i for (Quafe 1988).s cxplaine
in [Bringsjord, 1998), wher i’ shown that the proof of
because th st of preises includes an ngenious pived
devised encoding scheme, is very easy—« i i
st eve of s reguesid rom Yadents i iroduciory
‘mathematical log

Ukenis, oo 159 is e
dvisd oo given by Kleene 1999
imprsive work b |

e appa—but th machine xsndaly beg ins its process-
ing ata point exceedingly close to where it needs to end up.
As Sieg and Field conced
the representabilicy and derivabi
tral syntactic notions as well as
structing
such things, finding a proof of G1 is effortess for a comput-
g machine ] In Sum. whilo  lot of commendable work has
been done to build the foundation for our prospective work,
the daunting formal and engineering challenge of producing
a computational system able to produce G without clever
seeding from a human remains entirely unmet,

2 The Analogico-Deductive Approach

21

Godels proofs of i
greatest intellectual achievements of the 20th century. Even
amed withth suggeton hat he L|ar Paradox (LP) might

‘The problem with the purely deductive method is simply
ihat it does ot allow us o come close 10 the ype of
known to have

useful as a gide o provi
of pe Pclm Anv.hmm (PA)]the level ot creativity and philo-
sophical clariy required to actally tie the two concepts to-
gether and produce a valid proof is stsggering; it certainly

TG1 of course applis to any axiom system meet
dad condiions Turing decidbily, epresenabiy comsisncyy,
butwe tend o refr to PA for cconomizati

e Gt vl o e Gt o having a “line
of thought [which] seems to move from conjecture 1o con-
jecture™ [Wang, 1995]. Reasoners in general are known to
conjecture through analogy when a straightforward answer

A video demonstration of the small distnce process can be
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A Context: Infinitary Reasoning, and Humble

jord h formal scentist,taken at face value,
ivolve various ifinitary sructures and reasoning. (We say "t face value” to

in (sm.g,nm & van Heuveln 2003), Bringsjord himself operates s such  scientist in presenting an infintary

Fand ing Thesis ( inesond & Arkoudas 2006, Bringsjord &
Vorssenral
ot P make us of inary v
face vae[ ] We haveourseives desgoed logics g infiary essoning (e se¢
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: kskogly il bk
ysemaic

» ine b Ko ge nd il oy sbout

i infniary This s vealed e one s
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it the part

(e.2. sce Shilliday 2009).

Given this context, we are interested in exploring how one might give a machine the ability 1o reason in

infinitary fashion. We are not saying that we in fact have figured out how to give such abiity to a computing

‘machine. Our objective here is much more humble and limited: it s to push forward in the artempt 1o engineer a
. s . le and | R

- hat! Y L1810 Succe:
e e o

ytod Jained in (Bris 2003)

 hypercomputer, and takes the irst few steps. n the present paper, the engineering is aimed specifically at giving

a computing machine the abiity o, in a limited but well-defined sense, reason in infinitary fashion. Even more

specifically, il aresult
pecincs . i
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Abstract
Godel's proof of his famous first
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should not be controversial to claim that no computatior
reasoning system can, at present, achieve this sort of f
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