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Monographic Context ...
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Some of Godel’s great work is at the level of chess.



But to fully “gamify” Godel,
we need a harder game! ...
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American Go E-Journal

US Go Congress Goes a Little Crazy

Wednesday August 13, 2014

“White plays capturing black, putting herself and black into atari,” calls Crazy Go TD Terry Benson. He
officiated several games of Rengo Kriegspiel on Tuesday evening — a pair go game in which all four
players face away from the main board and play their stones on their own empty board in front of them;
the only clues about where their opponents — and even their partner — have played comes when they
make an illegal move, or play where their own team or their opponents already have stones. Rengo
Kriegspiel is only one of dozens of variants on the game of go that were played by an enthusiastic crowd
of around 100 players. Familiar games include Magnetic Go, 4 Color Go, Tessellation Go, 3D Go, Spiral
Go, and Blind Go. "After all these years, it's still crazy,” said TD and Crazy Go founder Terry Benson.
New Crazy Go games, never before played at a Go Congress, were even invented on the spot. Four
players donned sleeping masks to block their
vision and transformed Blind Go into Rengo Blind
| Go, and a few other players added the
fundamentals of Tiddlywinks to their go game.
Spectators and players alike are enthusiastic

31t eemesan,

3. .

ibss ity

about the creativity of the games and the fun of adding a little Crazy to Go; “Crazy Go is my favorite part
of the Congress!" said Bob Crites.
- report/photos by Karoline Li
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Rengo Kriegspiel

“One of the authors has personally played this game,
and it’s intriguing to think that it’'s possible he has
played the hardest game in the world, which cannot
even in principle be played by any algorithm. (Hearn &
Domaine 2009, sect 3.4.2, para. 2)
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logicians/mathematicians

S

The “Game Board”
(cannot be fully seen)

Theorem: ...

Proof: ...
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Godel’s Either/Or ...



The Question

Q* Is the human mind more powerful than
the class of standard computing machines?



Godel’s Either/Or

“[E]ither ... the human mind (even within the
realm of pure mathematics) infinitely surpasses
the power of any finite machine, or else there

exist absolutely unsolvable diophantine problems.”
— Godel, 1951



PT as a Diophantine Equation

Equations of this sort were introduced to you in middle-school, when you were asked
to find the hypotenuse of a right triangle when you knew its sides; the familiar equation,
the famous Pythagorean Theorem that most adults will remember at least echoes of
into their old age, is:

(PT) a*+b*=c?
and this is of course equivalent to
(PTY a*+b*>—=c?=0,

which is a Diophantine equation. Such equations have at least two

unknowns (here, we of course have three: a, b, ¢, and the equation is solved when
positive integers for the unknowns are found that render the equation true. Three
positive integers that render (PT") true are

a=4,b=3,¢c=25.

It Is mathematically impossible that there is a finite computing machine capable of
solving any Diophantine equation given to it as a challenge.



Background

problem?” 1In his lecture, Gédel precisely defines diophantine problems,
but we don’t need to bother with all of the details here; we only need to
appreciate the general structure of such a problem, and that can be achieved
quickly as follows, given what was introduced in Chapter 2.

Each diophantine problem has at its core a polynomial P whose variables
are comprised by two lists, x1,z2,...,z, and y1,y2,...,ym; all variables
must be integers, and the same for subscripts n and m. To represent a
polynomial in a manner that announces its variables, we can write

P(-’Elv-rQa ey Ty Y1, Y2, - - 7y_])

But Godel was specifically interested in whether, for all integers that can be
set to the variables x;, there are integers that can be set to the y;, such that
the polynomial equals 0. To make this clearer, first, here are two particular,
simple equations that employ polynomials that are both instances of the
needed form:

El 3z—-2y=0
E2 222—-y=0

All we need to do now is prefix these equations with quantifiers in the pattern
Godel gave. This pattern is quite simple: universally quantify over each x;
variable (using the now-familiar V), after which we existentially quantify
over each y; variable (using the also-now-familiar 3). Thus, here are the
two diophantine problems that correspond to the pair E1 and E2 from just
above:

P1  Is it true that Va3y(3z — 2y = 0)7
P2  Isit true that Va3y2z? — y = 0?7




The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7



The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7

Yes.



The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7

Yes.




The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7

Yes.

v
The human mind is not infinitely more powerful

than any standard computing machine.



The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7

Yes. No.

v
The human mind is not infinitely more powerful

than any standard computing machine.



The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7

Yes. No.

v
The human mind is not infinitely more powerful

than any standard computing machine.



The Crux

3P s.t. no human mind could ever decide Va1Vxy - - - Vi 3y 3ys - - - 3z (P(21, 22, - - -, Tk, Y1, Y2, - - -, Yj) 7

Yes. No.

The human mind is infinitely more powerful
than any standard computing machine.

v
The human mind is not infinitely more powerful

than any standard computing machine.
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Og pa den glade
merknaden for Selmer
(men ikke for Bill), er
forelesningene vadre
fullstendige.



