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(Experiment! Play! Learn! After all ...

the automated reasoning at your fingertips
is powerful enough for Al practitioners to

tackle “big” questions like ...

Can “Rosser’s Trick” be proved in HS™?
Can the U.S. Tax Code be formalized, and
use thereof automated?
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“l have proved that syntax
and semantics are
fundamentally the same.”




Preliminaries:
Propositional Calculus &
First-Order Logic
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Actually ...

Third-order logic, which Godel

Second-order logic. \ < used for his “God Theorem.”

Ly< L1<ZLHr< Py

Zero-order logic; subsumes B
the propositional calculus. First-order logic; this is

what the Completeness
Theorem is about.
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All instances of these schemata are true no matter
what the input (true or false). (Agreed?) And indeed
every single formula in the propositional calculus that
is true no matter what the permutation (as shown in
a truth table), can be proved (somehow) from these
four axioms (using the rules of inference given earlier
in our semester). This, Godel knew, and could use.



Al
A2
A3
A4

21t R&W’s Axiomatization of the

Propositional Calculus

(¢ \/ ¢) — ¢ (if Cor \phi \phi) \phi)

¢ % (gb \/ w) (if \phi (or \phi \psi))
\ ¢) — (w \/ ¢) (if Cor \phi \psi) (or \psi phi))

(¢
(WY —=x) = (V) = (& VX))

(if (if \psi \chi) (if (or \phi \psi) (or \phi \chi)))

All instances of these schemata are true no matter
what the input (true or false). (Agreed?) And indeed
every single formula in the propositional calculus that
is true no matter what the permutation (as shown in
a truth table), can be proved (somehow) from these
four axioms (using the rules of inference given earlier
in our semester). This, Godel knew, and could use.



Exercise |:

Verify that these are true-no-matter what in a truth tree in HyperSlate™;
then prove using our rules for the prop. calc.; or perhaps better yet,
have the oracle prove in HyperSlate™.

(P NY) = (¥ Vx)
¢ — (Y — ¢)
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From Language-Learning Slides:
The Grammar of the Pure Predicate Calculus

Formula = AtomicFormula
| (Formula Connective Formula)
| = Formula

AtomicFormula = (Predicate Termy ... Termy)
| (Term = Term)

Term = (FPunction Termy ... Termy)
| Constant

Connective = Al V| = |

Predicate = P |P|Ps...

Constant = c¢1|cales ...

Function = filfelfs ...
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—
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—
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Sally likes Bill and Bill likes Sally.
Term = (Function Termy ... Termy,) . -
| Constant Sally likes Bill’s mother.
Sally likes Bill only if Bill's mother is tall.
Connective = ANV ]=] e Matilda is Bill's super-smart mother.
5 plus 5 equals the number 10.
Predicate =|P|P|Ps ...
Constant =|ci|ca|es ... LeXICon
Function = filfelfs -

Can Roger be counted upon to declare: “Yes that sentence is
okay!” whenever it’s conforms to this grammar?
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Slightly More Complicated Examples

Formula = AtomicFormula

| (Formula Connective Formula)

| = Formula
AtomicFormula = (Predicate Termy ... Termy) If Sally likes Bill then Sally likes Bill.

| (Term = Term)

Sally likes Bill's mother, or not.

Term = (Punction Termy ... Termy)

| Constant Sally likes Bill and Bill likes Jane, only if Bill likes Jane.

Bill's smart mother is a mother.

Connective = Al V| = | &
Predicate ~ P |P| P ... These are all true, yes; but can they be proved?!
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The Shoulders Available to
Godel for Standing Upon
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Completeness Theorem for
The Propositional Calculus

Let T" be a set {¢1, ¢o, ...} of formulae in the the propositional calculus.
Then either all of I' are satisfiable, or the conjunction up to and including
the point k£ (i.e. ¢1 A ¢pa A ... A ¢x) of failure is refutable.

Let " be a set {¢1, @2, ...} of formulae in the the propositional calculus.
Then either all of I' can be simultaneously true in some scenario, or the
conjunction up to and including the point k (i.e. ¢1 Ao A ... A @) of
failure is refutable (i.e. F =(¢p1 A pa A ... A Pr)).



What does the
Completeness Theorem

say/!



Completeness Theorem as an Equation

In first-order logic: NECESSARY TRUTH = PROVABILITY.




Completeness Theorem,
More Precisely Put

For every first-order statement ¢: ¢ is a
necessary or absolute truth (i.e. true in any
scenario whatsoever) if, and only if, ¢ is provable.




And the version Godel targeted,
and proved:

For every first-order statement ¢: Either ¢
is true in some scenario, or ¢ is refutable
(= it’s negation —¢) can be proved).

GCT



The Proof-Sketch



The Proof-Sketch

To prove the theorem in the case of first-order logic ( = &),
we need to show that given any set | of formulae in first-order
logic, either there's a scenario on which every member of this
set is true; otherwise, there is a refutation of the set, i.e. a proof
from the set to an outright contradiction ¢ A —¢. We can
accomplish this by finding a procedure & that first takes the set
in question and goes hunting for a scenario that does the trick.
If the scenario is found, we're done. But, if such a scenario can't
be found, then our procedure moves on to find a proof of a
contradiction from [

How?! The procedure & is the building out of a truth tree! If all
the branches in the tree close, then the finding of a proof of a
contradiction uses resolution, and the resolution
guarantee. The guarantee is that if you have a set of formulae
that can’t be true in any scenario, resolution applied to the set

finds a contradiction L = A ={}. QED




I':={p1 — p2, p3 A D4, —P2, P4 — D1, ---}

[ p1 TRUE; p2 TRUE ) [ p1 FALSE; po FALSE ] [ p1 FALSE; po TRUE ) P1 — P2

| | |

[pg TRUE; P4 TRUE] [pg TRUE; p4 TRUE] [p3 TRUE; p4 TRUE) p3 A Py

[p4 TRUE; P TRUE) [p4 FALSE; pq FALSE] [p4 FALSE; Py TRUE) Py — P1

X X X

Therefore, there is no scenario in which all of the formulae are true!




I':= {p1 = ps, p2, P+ — P6, D5, D7 — P9, Ds,

(pl TRUE; p3 TRUE) (pl FALSE; p3 FALSE] [pl FALSE; ps3 TRUE]

C p TRUE ) ps TRUE

] C Py TRUE ]

p4 TRUE; pg TRUE
p4 FALSE; pg TRUE p4 FALSE; pg FALSE

@TRUE; D6 TR@ @FALSE; De FAL%

p4 FALSE D6 FALSE
P4 TRUE; pg TRUE
p4 FALSE; pg TRUE P4 FALSE; pg TRUE

Cp 5 TRUE} Cp5 TRUE) Cpg, TRUE)

Cpg) TRUE] Cp5 TRUE)

TRUE .
(p ° ) @5 TRU@ @5 TRUED (p5 TRU@

Therefore, since we can travel to infinity, there is a scenario in
which all of the formulae are true: any infinite path down will do.

3

P1 — D3

P2

P4 — Deé

P5



But the assumption that
there is an infinite branch is
based on Konig’s Lemma ...



Toward Konig’s Lemma as Train Travel

Long Island Rail Road
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“To infinity and beyond!”




Konig’s Lemma (train-travel version)

In a one-way train-travel map with finitely many
options leading from each station, if there are
partial paths forward of every finite length,
there is an infinite path (= a path “to infinity”).
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Exercise 2:
Is there an algorithm for traveling this way!?



Exercise 2:
Is there an algorithm for traveling this way!?

No. This strategy for travel is beyond
the reach of standard computation.



Exercise 2:
Is there an algorithm for traveling this way!?

No. This strategy for travel is beyond
the reach of standard computation.

(Does it not then follow, assuming
that humans can find and “use” a
provably correct strategy for this
travel, that humans can’t be
fundamentally computing machines?)



NY-Centric Proof of the Lemma

(that there is an infinite branch)

Proof: We are seeking to prove that there is an infinite path (= that you can keep going
forward forever = that the number of your stops forward are the size of Z*).

To begin, assume the antecedent of the theorem (i.e. that, (1), there are finitely many
options leading from each station, and that, (2), in the map there are partial paths forward
of every finite size).

Now, you are standing at Penn Station (S/), facing k options. At least one of these options
must lead to partial paths of arbitrary size (the size of any m in Z*). (Sub-Proof:
Suppose otherwise for indirect proof. Then there is some positive integer n that places a
ceiling on the size of partial paths that can be reached. But this violates (2) —
contradiction.) Proceed to choose one of these options that lead to partial paths of
arbitrary size. You are now standing at a new station (S2), one stop after Penn Station. At
least one of these options must lead to partial parts of arbitrary size (the size of any m in
Z*). (Sub-Proof: Suppose otherwise for indirect proof ...)

Since you can iterate this forever, you’ll be on an infinite trip to infinity! Buzz will be happy.

QED



Godel as Giant: Some Evidence

THE DISCOVERY OF MY COMPLETENESS PROOFS
LEON HENKIN

Dedicated to my teacher, Alonzo Church, in his 91st year.

§1. Introduction. Thispaperdealswith aspects of my doctoral dissertation'
which contributed to the early development of model theory. What was of
use to later workers was less the results of my thesis, than the method by
which I proved the completeness of first-order logic—a result established by
Kurt Godel in his doctoral thesis 18 years before.’

The ideas that fed my discovery of this proof were mostly those I found in
the teachings and writings of Alonzo Church. This may seem curious, as his
work in logic, and his teaching, gave great emphasis to the constructive char-
acter of mathematical logic, while the model theory to which I contributed
is filled with theorems about very large classes of mathematical structures,
whose proofs often by-pass constructive methods.

Another curious thing about my discovery of a new proof of Gddel’s
completeness theorem, is that it arrived in the midst of my efforts to prove
an entirely different result. Such “accidental” discoveries arise in many parts
of scientific work. Perhaps there are regularities in the conditions under
which such “accidents” occur which would interest some historians, so 1
shall try to describe in some detail the accident which befell me.

&egcived November 17, 1_995‘apd in reyi_segi_f_o-x'm. Ja_nue_u_'y_‘_%,_ 1?96.
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But How'd He Handle All of &Z,?

Godel proves the lemma that if the GCT holds for
formula of degree j, GCT holds of formulae of degree
jt1. So the challenge reduces to formulae of degree I:

VX5 X0 ey XAV Voo v vvs V@ X1 X0y oo ey Xps V15 Voo -+ 25 V)

How? By ingenious tree-building, which starts by creating an
enumeration of new constants ¢ = ¢y, ¢,, ...that becomes our “universe
of discourse”/“domain of quantification.” Note that from ¢ we can
algorithmically generate an enumeration of tuples ¢’ = {c);, (¢),, ... of
any finite size. (Those of size k will work for the x-variables, and those
of size n will work for the y-variables.) And now we can build a BIG
tree at the level of the pure predicate calculus, looking for either a
scenario that makes our formula true by traveling with Buzz to infinity,
or getting all branches closed, in which case we turn back to the
resolution guarantee! Let’s make sense of this by hand on paper ...
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Small Steps Toward Hypercomputation via
Infinitary Machine Proof Verification and Proof Generation

Naveen Sundar Govindarajulu, John Licato, and Selmer Bringsjord
Department of Computer Science
Department of Cognitive Science
R laer Al & R ing Lab y
govinn@rpi.edu e licatj@rpi.edu e selmer@rpi.edu

Rensselaer Polytechnic Institute
1108th Street, Troy , NY 12180 USA

Abstract. After setting a context based on two general points (that humans appear to reason in infinitary
fashion, and two, that actual hypercomputers aren’t currently available to directly model and replicate such
infinitary reasoning), we set a humble engineering goal of taking initial steps toward a computing machine
that can reason in mﬁmtary fashion. The uuunl steps consist in our outline of automated proof-verification
and proof- Y ques for th depend of PA that seem to require an understanding and
use nf infinitary concepts. We ifically focus on proof-di hni that make use of a marriage of

Yy
analogical and deductive reasoning (which we call unalogu:o deductive reasoning).

A Context: Infinitary Reasoning, Hyper ion, and Humble Engineering

Bringsjord has repeatedly pointed out the obvious fact that the behavior of formal scientists, taken at face value,
involve various infinitary structures and reasoning. (We say “at face value” to simply indicate we don’t presup-
pose some view that denies the reality of infinite entities routinely involved in the formal sciences.) For example,
in (Bringsjord & van Heuveln 2003), Bringsjord himself operates as such a scientist in presenting an infinitary
paradox which to his knowledge has yet to be solved. And he has argued that apparently infinitary behavior consti-
tutes a grave challenge to AI and the Church-Turing Thesis (e.g., see Bnngslon:l & Arkoudas 2006, Bnngs;crd &
Zenzen 2003). More g Ily, Bringsjord conj that every hi P d proof of a th

of Peano Arithmetic (PA) will makc use of mﬁmmry structures and reasoning, when these structures are Laken at
face valuem We have Ives desig; g ional logics for handling infinitary reasoning (e.g., see
the of the infinitized wi puzzle Arknudas & Bringsjord 2005), but this work simply falls back on
the human ability to carry out induction on the natural numbers: it doesn’t dissect and explain this ability. Finally,
1( must be ad.muttcd by all that Lhcre is slmply no h model or fi anywhere in the
formal/comp h to ding human knowledge and intelligence that provides a theory about
how humans are able to engage with infinitary structures. This is revealed perhaps most clearly when one studies
the fruit produced by the part of formal AI devoted to producing discovery systems: such fruit is embarrassingly
finitary (e.g., see Shilliday 2009).

Given this context, we are interested in exploring how one might give a machine the ability to reason in
infinitary fashion. We are not saying that we in fact have figured out how to give such ability to a computing
machine. Our objective here is much more humble and limited: it is to push forward in the attempt to engineer a
computing machme lhat has the ability to reason m infinitary fashion. Ultimately, if such an attempt is to succeed,
the puting in question will p ly be capable of outright hypercomputation. But the fact is that
from an engineering perspective, we don” "t know how to create and harness a hypercomputer. So what we must first
try to do, as explained in (Bringsjord & Zenzen 2003), is pursue engineering that initiates the attempt to engineer
a hypercomputer, and takes the first few steps. In the present paper, the engineering is aimed ifically at giving
a computing machine the ability to, in a limited but well-defined sense, reason in infinitary fashion. Even more
specifically, our engineering is aimed at building a machine capable of at least providing a strong case for a result
which, in the human sphere, has hitherto required use of infinitary techniques.

! A weaker conjecture along the same line has been ventured by Isaacson, and is elegantly discussed by Smith (2007).

Govindarajulu, N.; Licato, J.; Bringsjord, S. 2013. Small Steps Toward Hypercomputation via
Infinitary Machine Proof Verification and Proof Generation. In Proceedings of UCNC 2013. Pdf


http://link.springer.com/chapter/10.1007/978-3-642-39074-6_11
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In order to produce a rationally compelling proof
of any true sentence S formed from the symbol set
of the language of arithmetic, but independent of
PA, it’s necessary to deploy concepts and
structures of an irreducibly infinitary nature.




Yet, Conjecture (C)

(see “lsaacson’s Conjecture”)

In order to produce a rationally compelling proof
of any true sentence S formed from the symbol set
of the language of arithmetic, but independent of
PA, it’s necessary to deploy concepts and
structures of an irreducibly infinitary nature.

If this is right, and computing machines can’t
use irreducibly infinitary techniques, they’re in
trouble — or: there won’t be a Singularity.




