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Some Timeline Points

1906 Brünn, Austria-Hungary
1923 Vienna

Undergrad in seminar by Schlick
1929 Doctoral Dissertation:  Proof of Completeness Theorem

1933 Hitler comes to power.

1940 Back to USA, for good.

1978 Princeton NJ USA.

1930  Announces (First) Incompleteness Theorem

1936 Schlick murdered; Austria annexed 

“Well, uh, hmm, …”
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Ergo, step one:  What is LP?
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Suppose that T(L); then ¬T(L).

Suppose that ¬T(L) then T(L).

Contradiction!

Hence:  T(L) iff (i.e., if & only if) ¬T(L).
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All of this is fishy; but 
Gödel transformed it into 
utterly precise, impactful, 
indisputable reasoning …



PA (Peano Arithmetic):

A1 ⇥x(0 �= s(x))
A2 ⇥x⇥y(s(x) = s(y)� x = y)
A3 ⇤x(x ⇥= 0 � ⌅y(x = s(y))
A4 �x(x + 0 = x)
A5 �x�y(x + s(y) = s(x + y))
A6 ⇥x(x� 0 = 0)
A7 ⇥x⇥y(x� s(y) = (x� y) + x)

And, every sentence that is the universal closure of an instance of

where �(x) is open w� with variable x, and perhaps others, free.
([�(0) ⇤ ⇥x(�(x) � �(s(x))] � ⇥x�(x))
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So, gimcrack is named by some positive integer k.  Hence, I can 
just refer to this word as “k”  Or in the notation I prefer:  .kgimcrack
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Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a 
number n, and by the same basic lexicographic ordering, every 
computer program, formula, etc. is named by a number m in a 
lexicographic ordering going from 1, to 2, to …

Or, every syntactically valid computer program 
in Haskell that you will ever write can be 
uniquely denoted by some number m in the 
lexicographic ordering of all syntactically valid 
such programs.  So your program  can just be 
coded as a numeral  in a formal language that 
captures arithmetic (i.e., an arithmetic language).

π
mπ



Let  be a set of arithmetic sentences that is 

(i) consistent (i.e. no contradiction  can be 
deduced from );

(ii) s.t. an algorithm is available to decide whether or 
not a given string  is a member of ; and 

(iii) sufficiently expressive to capture all of the 
operations of a standard computing machine (e.g. a 
Turing machine, register machine, KU machine, 
etc.).

Then there is an “undecidable” arithmetic sentence  
from Gödel that can’t be proved from , nor can the 
negation of this sentence (i.e. ) be proved from !

Φ

ϕ ∧ ¬ϕ
Φ

u Φ

𝒢
Φ

¬𝒢 Φ

Gödel’s First Incompleteness Theorem



Alas, that’s painfully verbose.



Gödel’s First Incompleteness Theorem



Suppose  that is

(i) ;
(ii) Turing-decidable, and 
(iii) sufficiently expressive to capture all of the 

operations of a Turing machine (i.e. ).

Then there is an arithmetic sentence  s.t. 
 and .

Φ ⊃ PA

Con Φ

Repr Φ

𝒢
Φ ⊬ 𝒢 Φ ⊬ ¬𝒢

Gödel’s First Incompleteness Theorem



To prove G1, we shall 
allow ourselves …



The Fixed Point Theorem (FPT)

Assume that  is a set of arithmetic sentences such 
that .  There for every arithmetic formula  
with one free variable , there is an arithmetic 
sentence  s.t.

.

We can intuitively understand  to be saying:  
“I have the property ascribed to me by the formula .”

Φ
Repr Φ ψ(x)

x
ϕ

Φ ⊢ ϕ ↔ ψ(nϕ)

ϕ
ψ



Ok; so let’s do it …





Proof:  Let  be a set of arithmetic sentences, and suppose the 
antecedent of G1 holds, i.e. (i)–(iii) hold.  We must show that neither 

, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, 
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𝒢
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Now suppose .  By right-to-left on (1) we deduce 
.  Then , by 

right-to-left on (2).  But therefore .  Since by hypothesis 
we have , contradiction!
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can be proved from .  Let us instantiate  and FPT, respectively:

Φ

𝒢
Φ Repr Φ

“I’m unprovable!”



Now suppose .  By right-to-left on (1) we deduce 
.  Then , by 

right-to-left on (2).  But therefore .  Since by hypothesis 
we have , contradiction!

Φ ⊢ 𝒢
Φ ⊢ Thm(n𝒢) = Φ ⊢ ¬¬Thm(n𝒢) Φ ⊢ ¬𝒢

Inc Φ
Con Φ

(FPT ) = (2)   if and only if .* Φ ⊢ 𝒢 ¬Thm(n𝒢)

(Repr ) = (1)   if and only if .* Φ ⊢ Thm(nϕ) Φ ⊢ ϕ

Proof:  Let  be a set of arithmetic sentences, and suppose the 
antecedent of G1 holds, i.e. (i)–(iii) hold.  We must show that neither 

, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence, 
can be proved from .  Let us instantiate  and FPT, respectively:

Φ

𝒢
Φ Repr Φ

Suppose on the other hand .  Therefore by (2) we deduce 
, i.e. .  From this and an 

instantiation of (1) we have .  But this entails .  Yet our 
original assumptions include , so once again:  contradiction!  
QED

Φ ⊢ ¬𝒢
Φ ⊢ ¬¬Thm(n𝒢) Φ ⊢ Thm(n𝒢)

Φ ⊢ 𝒢 Inc Φ
Con Φ

“I’m unprovable!”



“Silly abstract nonsense!  There 
aren’t any concrete examples of !”𝒢



Ah, but e.g.:  Goodstein’s Theorem!



Ah, but e.g.:  Goodstein’s Theorem!

The Goodstein Sequence goes to zero!



Pure base n representation of 
a number r

• Represent r as only sum of powers of n in 
which the exponents are also powers of n, etc.



Grow Function



Example of Grow



Goodstein Sequence
• For any natural number m



Sample Values
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Sample Values
m

2 2 2 1 0

3 3 3 3 2 1 0

4 4 26 41 60 83 109 139 ... 11327 
(96th term)

...



Sample Values
m

2 2 2 1 0

3 3 3 3 2 1 0

4 4 26 41 60 83 109 139 ... 11327 
(96th term)

...

5 15 ~1013 ~10155 ~102185 ~1036306 10695975 1015151337 ...





This sequence actually goes to zero!
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Astrologic:  
Rational Aliens Will be on the Same “Race Track”!
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= TRUEA/II

?

Astrologic:  
Rational Aliens Will be on the Same “Race Track”!



Could an AI Ever Match Gödel’s G1 & G2?



Gödel’s Great Theorems (OUP)
by Selmer Bringsjord

• Introduction (“The Wager”)

• Brief Preliminaries (e.g. the 
propositional calculus & FOL)

• The Completeness Theorem

• The First Incompleteness Theorem 

• The Second Incompleteness 
Theorem

• The Speedup Theorem

• The Continuum-Hypothesis 
Theorem

• The Time-Travel Theorem

• Gödel’s “God Theorem”

• Could a Machine Match Gödel’s 
Genius?



Gödel’s Great Theorems (OUP)
by Selmer Bringsjord

• Introduction (“The Wager”)

• Brief Preliminaries (e.g. the 
propositional calculus & FOL)

• The Completeness Theorem

• The First Incompleteness Theorem 

• The Second Incompleteness 
Theorem

• The Speedup Theorem

• The Continuum-Hypothesis 
Theorem

• The Time-Travel Theorem

• Gödel’s “God Theorem”

• Could a Machine Match Gödel’s 
Genius?





Med nok penger,  kan 
logikk løse alle problemer.


