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By far the greatest of GGT; Selm’s analysis based Sherlock Holmes’ mystery “Silver Blaze.”
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“Well, uh, hmm, ...”
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Ergo, step one: What is LP?
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P: This sentence is unprovable.

Suppose that P is true. Then we can immediately deduce
that P is provable, because here is a proof: P — P is an easy
theorem, and from it and our supposition we deduce P by
modus ponens. But since what P says is that it’s unprovable,
we have deduced that P is false under our initial supposition.

Suppose on the other hand that P is false. Then we can
immediately deduce that P is unprovable: Suppose for reductio that
P is provable; then P holds as a result of some proof, but what P
says is that it’s unprovable; and so we have contradiction. But since
what P says is that it’s unprovable, and we have just proved that
under our supposition, we arrive at the conclusion that P is true.

T(P) iff (i.e., if & only if) -T(I_’) = F(P)
Contradiction!







All of this is fishy; but

Godel transformed it into
utterly precise, impactful,
indisputable reasoning ...



PA (Peano Arithmetic):

Al
A2
A3
A4
A5
A6
A7

Va (0 # s(x))
VaVy(s(x) = s(y) — = =y)

Va(z # 0 — Jy(z = s(y))
Ve(zx + 0 = z)

vavy(z +s(y) = s(z +y))
Va(z x 0=0)

VaVy(z x s(y) = (z X y) + )

And, every sentence that is the universal closure of an instance of

([¢(0) AVz(o(z) — @(s(2))] — Vzo(z))

where ¢(x) is open wif with variable x, and perhaps others, free.
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Solution: Godel numbering!
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f(z,a) 142323 4. 4140
Syntactic objects Godel number Godel numeral
(formulae, terms, proofs etc) back to syntax
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Oxford
English
Dictionary

So, gimcrack is named by some positive integer k. Hence, | can

just refer to this word as “k” Or in the notation | prefer: ygimerack
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Godel Numbering, the Easy VWay

Just realize that every entry in a dictionary is named by a
number n, and by the same basic lexicographic ordering, every
computer program, formula, etc. is named by a number m in a
lexicographic ordering going from |, to 2,to ...

Or, every syntactically valid computer program
in Haskell that you will ever write can be
uniquely denoted by some number m in the
lexicographic ordering of all syntactically valid
such programs. So your program r can just be
coded as a numeral m” in a formal language that
captures arithmetic (i.e., an arithmetic language).



Godel’s First Incompleteness Theorem

Let @ be a set of arithmetic sentences that is

(i) consistent (i.e. no contradiction ¢» A —¢h can be

deduced from ®);
(1) s.t.an algorithm is avallable to decide whether or

not a given string u is a member of @; and

(1) sufficiently expressive to capture all of the
operations of a standard computing machine (e.g. a
Turing machine, register machine, KU machine,

etc.).

Then there is an “undecidable” arithmetic sentence &
from Godel that can't be proved from @, nor can the
negation of this sentence (i.e. &) be proved from ®!



Alas, that’s painfully verbose.
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Godel’s First Incompleteness Theorem

Suppose @ D PA that is

(1) Con P;

(i) Turing-decidable, and

(1) sufficiently expressive to capture all of the
operations of a Turing machine (i.e. Repr @).

Then there is an arithmetic sentence & s.t.
O K Eand O K ¢



To prove G, we shall
allow ourselves ...



The Fixed Point Theorem (FPT)

Assume that @ is a set of arithmetic sentences such
that Repr @. There for every arithmetic formula y(x)
with one free variable x, there Is an arithmetic
sentence ¢ sit.

®+ P o wn?

We can intuitively understand ¢ to be saying:
"l have the property ascribed to me by the formula y.”



Ok;soletsdo it ...
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T
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—

(FPT*) = (2) ® - € fand only if = Thm(n?). \

Now suppose @ = €. By right-to-left on (I) we deduce
O+ Thm(n?) = ® - = =Thm(n*). Then ® - =2, by
right-to-left on (2). But therefore Inc ®. Since by hypothesis
we have Con @, contradiction!



Proof. et ® be a set of arithmetic sentences, and suppose the
antecedent of G holds, 1.e. (1)—(ii1) hold. We must show that nerther
&, nor the negation of this (Liar-Paradox-inspired) arithmetic sentence,
can be proved from @. Let us instantiate Repr ® and FPT, respectively:

)
(Repr¥) = (1) @ + Thm(n?) if and only if ® F ¢. J T unprovable!

(FPT*) = (2) ® - € fand only if = Thm(n?). \ —

Now suppose @ = €. By right-to-left on (I) we deduce
O+ Thm(n?) = ® - = =Thm(n*). Then ® - =2, by
right-to-left on (2). But therefore Inc ®. Since by hypothesis
we have Con @, contradiction!

Suppose on the other hand @ F =&, Therefore by (2) we deduce
® F ~=Thm(n?),ie. ® - Thm((n®). From this and an
instantiation of (1) we have ® = &. But this entails Inc ®. Yet our
original assumptions include Con ®, so once again: contradiction!
QED



“Silly abstract nonsense! There
aren’t any concrete examples of &!”
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Ah, but e.g.: Goodstein’s Theorem!

The Goodstein Sequence goes to zero!



Pure base n representation of
a humber r

® Represent r as only sum of powers of n in
which the exponents are also powers of n, etc.

+29)

266 = 22(220 1 9(2* +2%) | 92°



Grow Function

Growg(n) :

1. Take the pure base k representation of n

2. Replace all k by k + 1. Compute the number obtained.

3. Subtract one from the number



Example of Grow

Grows(19)

20
19 =22° 92 4 90
33" 30 50
3 +3° +3
38%" 133 £30 1

7625597484990



Goodstein Sequence

® For any natural number m

m
Grows(m)
Grows(Grows(m))

Grows(Grows(Grows(m))),
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Sample Values

) | 0
3 3 2 | 0
26 41 60 83 109 139 11327

(96th term)




Sample Values

2 2 I 0
3 3 3 2 I 0

11327
4 26 41 60 83 109 139 (96th term)
15 ~10!13 ~10155 | ~02185 | ~]036306 | 0695975 | 1015151337







This sequence actually goes to zero!



[ Astrologic:

Rational Aliens Will be on the Same “Race Track’!

PAF=TRUE,,/;
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Could an Al Ever Match Godel’s G| & G2?



Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem
® Godel’s “God Theorem”

® Could a Machine Match Godel’s
Genius?
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Godel’s Great Theorems (oup)

by Selmer Bringsjord

® Introduction (“The Wager”)

® Brief Preliminaries (e.g. the
propositional calculus & FOL)

® The Completeness Theorem
® The First Incompleteness Theorem

® The Second Incompleteness
Theorem

® The Speedup Theorem

® The Continuum-Hypothesis
Theorem

® TheTime-Travel Theorem

® Godel’s “God Theorem”

Genius!?







Med nok penger, kan
logikk lese alle problemer.



