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Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

builds on the power and
limits of computing
processes, whether they are exe-
cuted by a human or by a
machine. Computational
methods and models give us
the courage to solve prob-
lems and design systems that no one of us would
be capable of tackling alone. Computational chink-
ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
rational cthinking to every child’s analytical abilicy.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous abour chis
vision is that computing and computers facilitate the
spread of computational thinking.

Compurational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
o computer science. Compurational thinking
includes a range of mental twols thar reflect the
breadth of the field of computer science.

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What's the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

Compuutioml thinking

in cveryoncs hives n wor 1!

34 vrer 2006Vl 49 Mo ) COMMUNICATIONS OF THE ACH

mgra
rﬁ\m and precondition are part of everyone’s vocab-  characteristics:

cisely. Stating the difficulty of 2 problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment.

In solving a problem efficiently, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a scemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.

Computational thinking is thinking recursively. It
is parallel processing, It is interpreting code as datz
and daz as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency bur for
aesthetics, and a system's design for simplicity and
clegance.

decomposition when artacking a large complex rask
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevane aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every demil. It is
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practically,
physically,
and ethically.



The Track

Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

> Teach computer programming! > 2 nouns (‘0’, 1°),
. 3 verbs (‘move’, ‘print’, ‘halt’),
(P roced u ral’ 0-o, fU nctl onal) 3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

— Rapaport, “phics" book



The Track

Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

> Teach computer programming! > 2 nouns (‘0’, 1°),
. 3 verbs (‘move’, ‘print’, ‘halt’),
(P roced u ral’ 0-o, fU nctl onal) 3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

— Rapaport, “phics" book

What about Turner?!?



|. A Hard Question ...



Easy Question



Easy Question

What is pure procedural programming!?



Another Easy Question



Another Easy Question

What is pure functional programming?



A Hard Question



A Hard Question

What is pure logic programming!?



A Hard Question

What is pure logic programming?



A Hard Question

What is pure logic programming!?

Naveen: “Using automated
theorem provers ...”



2. Leibniz’s Universal Calculus Found ...



Leibniz



Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later



“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later



“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later



“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016



“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016



“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”




Universal

“Universal -
Cognitive Cognitive
Calculus” Calculus
Found
2016

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

2018



Universal

“Universal - .
Cognitive Cognitive DCEC
Calculus” Calculus -
Found
2016 2018

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later



Universal

“Universal - .
Cognitive Cognitive DCEC
Calculus” Calculus
Found
2016 2018

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”




“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?
“Sorry, not impressed.”

Selm

2018

RA 1R

Rensselaer Al and Reasoning Lab



“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

Selmer Bringsjord

2018

RA 1R

Rensselaer Al and: Reasoning Lab



Universal

“Universal > )
Cognitive Cognitive DCEC
Calculus” Calculus

Found

2016 2018

Al of Today: What Would Leibniz Say?
“Sorry, not impressed.”
Selmer Bringsiord R A I R

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Rensselaer Al and Reasoning Lab




“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

1716

Pure General L mming (PGLP)

R

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?
“Sorry, not impressed.”

Selm

2018

RA 1R

Rensselaer Al and: Reasoning Lab




“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

2018

RA 1R

Rensselaer Al and Reasoning Lab




Leibniz’s Dream of the
Universal Cognitive Calculus



Leibniz’s Dream of the
Universal Cognitive Calculus

| have come to understand that everything ... which algebra
proves is only due to a higher science, which | now usually call a
combinatorial characteristic, though it is far different from what
may first occur to someone hearing these words. ... Yet |
should venture to say that nothing more effective can well be
conceived for perfecting the human mind and that if this basis for
philosophizing is accepted, there will come a time, and it will be
soon, when we shall have as certain knowledge of God and the
mind as we now have of figures and numbers and when the
invention of machines will be no more difficult than the

construction of geometric problems.
(Leibniz, 1675)
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Leibniz’s Dream of the
Universal Cognitive Calculus

This is undoubtedly one of the greatest projects to which
men have ever set themselves. It will be an instrument even
more useful to the mind than telescopes or microscopes are
to the eyes. Every line of this writing will be equivalent to a
demonstration. The only fallacies will be easily detected
errors in calculation. This will become the great method of
discovering truths, establishing them, and teaching them

irresistibly when they are established.
(Leibniz, 1679)
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Leibniz’s Dream of the
Universal Cognitive Calculus

| certainly believe that it is useful to depart
from rigorous demonstration in geometry
because errors are easily avoided there, but in
metaphysical and ethical matters | think we
should follow the greatest rigor. Yet if we had
an established characteristic we might reason
as safely in metaphysics as in mathematics.
(Leibniz, 1679)
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E.g., re. the dream of the
Universal Cognitive Calculus

When we lack sufficient data to drive at
certainty in our truths, it would also serve
to estimate degrees of probability and to

see what is needed to provide this certainty.
(Leibniz, 1679)
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Analogical Inductive Reasoning (formal & hence suitable for automation & verification)

Logical Calculi

Finitary



Logical Calculi
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Four Hierarchies

A"™H (Analytic Hierarchy)

Infinite Time Turing Machines (ITTMs) |

Human Persons
(according to Bringsjord)

A" H  (Arithmetic Hierarchy)

Human Brains
(according to Granger)

CH (Chomsky Hierarchy)

Turing Machines (TMs)

A

(decidable formulae) Linear Bounded Automata (LBAs)

Push Down Automata (PDAs)

Finite State Automata (FSASs)




Space of Some Logical Calculi in Five Dimensions

Extensionsal oo CCoo

CCk,k <3 HOL (extensional) 2
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5. Example |: Ethical Control

via a Program Based on
DCEC* + ShadowProver ...



A Trolley Dilemma
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Informal Version of DDE

the action is not forbidden (where we assume an ethical hier-
archy such as the one given by Bringsjord [2017], and require
that the action be neutral or above neutral in such a hierarchy);

the net utility or goodness of the action is greater than some
positive amount ;

the agent performing the action intends only the good effects;
the agent does not intend any of the bad effects;

the bad effects are not used as a means to obtain the good ef-
fects; and

if there are bad effects, the agent would rather the situation be
different and the agent not have to perform the action. That is,
the action is unavoidable.
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Syntax

S ::= Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

clipped : Moment x Fluent x Moment — Formula

initiates : Event x Fluent x Moment — Formula

terminates : Event X Fluent x Moment — Formula

| prior : Moment x Moment — Formula

“Univer Univers 66) tu=x:8|c:S| f(t1,...,tn)
|
P — ¢t : Formula | =0 | 0 AW | 0V w | P(a,t,0) | K(a,t,0) | C(t,0)

Cognitiv

¢ == q S(a,b,1,0) | S(a,t,0) | B(a,1,9) | D(a,t,Holds(f,t")) | L(a,t,6)
— O(a,t,9, (—)happens(action(a*,a),t’))

.5 centuries
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- O(a,t,9, (—)happens(action(a*,a),t’))

crss e o K(a,,I), TFO, 1<t B(a,t;,T), THO, 1 <t
. Rl

K(a7t27¢) B(a7t27¢)
(R,]

.5 centuries C(t,P(a,t,0) — K(a,t,0)) Ra] C(t,K(a,t,9) — B(a,t,0))

Ct,0)t<t;...t<t, K(a,t,0)
(R3]
K(al,tl,...K(a,,,t,,,q))...) q)

&z
; Inference Schemata
W

[R4]

[Rs]
[Rs]

C(Z,K(d,l] 7¢1 — ¢2)) — K(aat27¢l) - K(a1137¢2)

C(Z7B(a7t1a¢l - ¢2)) - B(d,lz,(})]) - B(a7t37¢2)
[Ri]

C(t,C(t1,01 = ¢2)) = C(t2,01) — C(83,02)
[Rs]

[Ro]

C(t,Vx. § — Ox —1]) C(2,01 <> G2 — —0, = )

[R1o]

Clt,[p1 A Aw = 0] = 01— ... > 0 = ¥])
S(s,h,t,0) R I(a,t,happens(action(a*,a),t')) -
B(h,t,B(s,2,0)) [Ri2] P(a,t,happens(action(a*,a),1)) [Ris]
B(a,1,0) B(a,1,0(a,1,0,%)) O(a,1,0,%)

K(a,t,1(a,t,%))

[R14]












Formal Conditions for DDE

F;1 o carried out at ¢ is not forbidden. That is:

r'/-0 (a, t,0,—happens (action(a, a), t) )

F, The net utility is greater than a given positive real 7:

H
r- ) ( Y ufy)- Y, ﬂ(f,y)) >y

y=t+1 \ feo)' feos!

F3, The agent a intends at least one good effect. (F, should
still hold after removing all other good effects.) There is

at least one fluent f, in o’ with p(f,,y) > 0, or f;, in

of’ with 1 (fp,) <0, and some y with < y < H such
that the following holds:

if, € oc?’t I(a,t,Holds(fg,y))
'+ \%

3, € a2 I(a,t,ﬁHolds(fb,y))

F3, The agent a does not intend any bad effect. For all fluents

fp in o with u(fy,y) <0, or f, in o’ with u(f,y) >
0, and for all y such that t < y < H the following holds:

T - 1(a,t, Holds(f3,) ) and

I (a, t, ﬁHOldS(fgay))

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of [> above, hold
here. One such permutation is shown below. For any bad
fluent fj holding at #1, and any good fluent fg holding at
some #;, such that ¢ < t1,# < H, the following holds:

k- (Hozds(fb,tl) ,HoldS(ngZ))
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Hogger’s “Simple”Switch Example
(pp- 2-3)
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Hogger’s “Simple”Switch Example
(pp- 2-3)

o ./ N1y
EEIR"

[On (b1, on A On(b2, on A On(b3, off )] — O(SwitchState(on))

What kind of Al/program
do we want in place
when there isn’t a human
in the loop who can
throw in a “wrench’™?
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