Pure General Logic Programming
(Intro/Overview)

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic
2/10/2020

RA/lI R

Rensselaer Al and Reasoning Lab

“Universal
Computational Logic”

Entscheidungsproblem

350 BC 300 BC 1666

Leibniz

/

Euclid Organon

An ¢
Investigation
of the Laws
of Thought

Simon

2019

Intro to Logic @ RPI

2020

wo > -

S 8y —C 00 S

-~ XK

Euclid

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Organon

2019

Y

An
Investigation
of the Laws
of Thought

Intro to Logic @ RPI

2020

wo > -

S 9 — C 0 S

-~ XK

Euclid

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Organon

2019

Y

An
Investigation
of the Laws
of Thought

Intro to Logic @ RPI

2020

wo > -

S 9 — C 0 S

-~ XK

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

Organon

An g "

Investigation
of the Laws
of Thought

being, at bottom, formal proofs in

first-order logic (FOL).

2019

Intro to Logic @ RPI

2020

wo > -

S 8y —C 00 S

-~ XK

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

Organon

being, at bottom, formal proofs in

first-order logic (FOL).

An "
Investigation
of the Laws
of Thought

Church

2019

Intro to Logic @ RPI

2020

wo > -

S 8y —C 00 S

-~ XK

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

Organon

being, at bottom, formal proofs in

first-order logic (FOL).

4
An b
Investigation
of the Laws
of Thought

Church

2019

Intro to Logic @ RPI

2020

wo > -

S 9 — C 0 S

-~ XK

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

Organon

being, at bottom, formal proofs in

first-order logic (FOL).

4
An b
Investigation
of the Laws
of Thought

Church

2019

Intro to Logic @ RPI

2020

wo > -

S 9 — C 0 S

-~ XK

“Universal
Computational Logic”

7

Entscheidungsproblem

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

Organon

being, at bottom, formal proofs in

first-order logic (FOL).

4
An b
Investigation
of the Laws
of Thought

Church

2019 2020

Intro to Logic @ RPI

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?
Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

2019 2020

An
Investigation
of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Intro to Logic @ RPI

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

g

Church Turing Post

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?
Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

2019 2020

An
Investigation
of the Laws
of Thought

Organon Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Intro to Logic @ RPI

Here’s what a computer is, and
given that, sorry, the

i Entscheidungsproblem can’t be

f //’ ¢, solved by such a machine!

Church Turing Post

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?
Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

2019

An
Investigation
of the Laws
of Thought

Organon Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Intro to Logic @ RPI

given that, sorry, the

Church Turing Post

2020

Here’s what a computer is, and

77 @ Entscheidungsproblem can’t be
f //’ ¢, solved by such a machine!

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?

Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

2019 2020

An
Investigation
of the Laws
of Thought

Organon Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Intro to Logic @ RPI

Here’s what a computer is, and
given that, sorry, the

A Entscheidungsproblem can’t be

f //’ ¢, solved by such a machine!

Church Turing Post

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?
Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

2019 2020

An
Investigation
of the Laws
of Thought

Leibniz

Organ

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Intro to Logic @ RPI

Here’s what a computer is, and
given that, sorry, the

A Entscheidungsproblem can’t be

f //’ ¢, solved by such a machine!

Church Turing Post

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?
Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

2019 2020

An
Investigation
of the Laws
of Thought

Leibniz

Organ

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Intro to Logic @ RPI

Here’s what a computer is, and
given that, sorry, the

A Entscheidungsproblem can’t be

f //’ ¢, solved by such a machine!

Church Turing Post

wo > -

S 9 — C 0 S

-~ XK

New: Functional = Church; ?
Procedural = Turing. Where Entscheid.ungsproblem
is logicist computation!?

“Universal
Computational Logic”

An
Investigation
of the Laws
of Thought

2019

2020

wo > -

— C 0a S

T =

Leibniz

Organ

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Here’s what a computer is, and
given that, sorry, the

A Entscheidungsproblem can’t be

f //’ ¢, solved by such a machine!

Church Turing Post

-~ XK

Iwo Logicist Branches; Bl:

Iwo Logicist Branches; Bl:

Frege (remember him?), 1893:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Iwo Logicist Branches; Bl:

Frege (remember him?), 1893:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, |920’s:
“Ahal | can do this stuff
using combinatory logic!”

Iwo Logicist Branches; Bl:

Frege (remember him?), 1893:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, |920’s:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Iwo Logicist Branches; Bl:

Frege (remember him?), 1893:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, |920’s:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Iwo Logicist Branches; Bl:

Frege (remember him?), 1893:
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affairl”

Schonfinkel, |920’s:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell

https://en.wikipedia.org/wiki/Haskell_(programming_language)

Iwo Logicist Branches; B2:

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Prolog?

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

Single-Slide Encapsulation ...

P L
q L

L= (L,TI) R : (P,q) — (YIN[U]a,d, 7m(s)|cx(s)

C : W(S)‘CV(S) H<Y’N‘U?5>

answer; could itself be a theory/set of formulae

L= & \//

% Y]N]U]a 5 7'(‘(3)‘04(5)
(C ; W(S)‘CV(S) — (Y|N|U, §)

checker

The “British Track™ (Procedural) ...

The Track

The Track

Computational thinking is ... Computer programming is ... A computer program is ...

The

Track

Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

builds on the power and
limits of computing
processes, whether they are exe-
cuted by a human or by a
machine. Computational
methods and models give us
the courage to solve prob-
lems and design systems that no one of us would
be capable of tackling alone. Computational chink-
ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
rational cthinking to every child’s analytical abilicy.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous abour chis
vision is that computing and computers facilitate the
spread of computational thinking.

Compurational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
o computer science. Compurational thinking
includes a range of mental twols thar reflect the
breadth of the field of computer science.

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What's the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

Compuutioml thinking

in cveryoncs hives n wor 1!

34 vrer 2006Vl 49 Mo) COMMUNICATIONS OF THE ACH

mgra
rﬁ\m and precondition are part of everyone’s vocab- characteristics:

cisely. Stating the difficulty of 2 problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment.

In solving a problem efficiently, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a scemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.

Computational thinking is thinking recursively. It
is parallel processing, It is interpreting code as datz
and daz as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency bur for
aesthetics, and a system's design for simplicity and
clegance.

decomposition when artacking a large complex rask
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevane aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every demil. It is

COMMUNICATIONS OF THE ACHM March 2004, Vol 43 No. 3

0~ Computanonal thinking thus has the

collection

nputz-

pample,

5. Statisti-
a scale, in

iments in
juter scien-

cncﬁt's

h comput-

e skill sec
le else.
jputational
puting was
ficy; com-

on—
:Fm it.
ollowing

Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

omputational thinking
builds on the power and
limits of computing
processes, whether they are exe-
cuted by a human or by a
machine. Computational
methods and models give us
the courage to solve prob-
lems and design systems that no one of us would
be capable of tackling alone. Computational think-
ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
tational cthinking to every child’s analytical abiliry.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking.

Compurational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
o computer science. Compurational thinking
includes a range of mental wols that reflect the
breadth of the field of computer science.

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What's the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

cisely. Stating the difficulty of 2 problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction sct, its resource
constrains, and its operating environment.

In sohnngapmblan efficiently, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a scemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.
is parallel processing, It is interpreting code as datz
and data as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency bur for
aesthetics, and a system’s design for simplicity and
clegance.
decomposition when ing a large complex rask
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can

safely use, modify.mdinﬁumccahzgc::fa
system without understanding its every derail. It is

COMMUNICATIONS OF THE ACH Mach 2006,Ver 43 N 3 33

. Track

Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
d use.

computer scientists, would be eager to learn and us

builds on the power and

cuted by human or by a
machine. Computstond

conscais, and i opeaing cvisonmens
In slving 3 roblem fcinty, we might

the coursge o sobve
lems and dsign e that 2o one of s would
e capable of racking slone.

“rough, whe
advaniage, and whether e posiives o e nega
E i Corps :

Whatcan humans do bester than computes? snd
than humans? Mose

now o o s, pshape by sdcion. cnbed.

& ly > fhacis
compuable Today, we know only pars ofthe

i pacldlprocesing T rvepreing code 3 da
a0 a2 code. 11 ype cheskin. -

ek gt po <
; i 3 e
e et bolie
= d — .
et S e ke
iy g o
n e gyt
o oot ! s e
g gt whon s oueet
o (el
St o ; :
vy e
r o we g i

I 2 prciular probic
sk How diffclt s 0 0! and What che best

dcluivey ¢ s having the confidence we can
ey s, modiy

way o o

deal ks

The Track

Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

builds on the power and
limics of computing
s, whethes thy ae cxe.

cuted by human or by a s operuing enviconmen:
‘machine. Computaiondl In slving 3 roblem fcinty, we might
s ik
thecoursge 10 solve prob- | cnough, whesher w can e rendomizaton t o
lems and dsign ysems that 2o one of s would advanage, and wheher e posives o ik negr
Capableof racing slone. L hink. dves e slowed. g
‘What can humans do beter tan computes? nd know bow t sove prhaps by redcion, cnbed.
than humans? Mose ding wion, o smulaion,
& 5 Whacis & E
compuable? Todsy, we know only parts ofthe s paclel procesing I inceprein code 3 daa
Snover 0 sch quesions. a0 a2 code. 11 ype cheskin e g
e iy T rcogog
iy Tomad both e e or g
g d e should odd compe- ing, <
5 it
. ofthe dreing and procedre cal. e jding 3 pro-
hiee R, iy r ram nox chicney bic for
e for simplicicy and
Sprcd of computsaiona kg ogance \ .
, dccompesiion when amack ex ik
chavior ord Toic epursion
 computer science s

[y of e wing v
Tiaing o v e proic,we ighe iy d

s o difci 10 o) and Whats b iy, I s g e coniees e o
e iy e, mod

g s cery dei, e

The Track

not just

-

The Track

Teach computer programming!
(procedural, o-o, functional)

Computational Thinking

It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

builds on the power and

ing shone. Compuesions think.

Whatcan humans do bester than computes? snd
‘What can computersdo beterchan hurnans? Mose _ding ranformaion, o imultion
Sundamensaly ¢ sddress th Whacis : gk

compuable Todsy, we know only parts ofthe s paclel procesing I s inceprein c
nsrs o such quesions. £ code. It type chesking

iy Tomad borh e v
‘ s

st e the prining pres il the spread of e adirsing snd procedure cal. It o
hiee R, iy bous s gram nox

b
o i i, design for simpliciy snd
pread of compurasons thinking, ognce

. i dccompniion when scking s ge compl
behavior or desgaing » Toic epursion
 computer science of concemne oo

ciades ange of memtl cing apes
Breadeh of e o i e g v

a0t o describe s behaior uccincly 324

Having o sobe paricular prob
ici ko e vy Ic s havingthe confider
d

ke How diffclt s 0 0
way o slve i Ce

g s cery dei, e

The Track

Teach computer programming!
procedural, o-o, functional)

The Track

Computer science is the scientific (or STEM) study of:

what problems can be solved,
F:om utational Thinking what tasks can be accomplished,
o and what features of the world can be understood ...

iersally spplicable attitude and skill set everyone, not just
uld be d use.

... computationally, that is, using a language with only:

> Teach computer programming! > 2 nouns (‘0’, 1°),
. 3 verbs (‘move’, ‘print’, ‘halt’),
(P roced u ral’ 0-o, fU nctl onal) 3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

The Track

Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

> Teach computer programming! > 2 nouns (‘0’, 1°),
. 3 verbs (‘move’, ‘print’, ‘halt’),
(P roced u ral’ 0-o, fU nctl onal) 3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

— Rapaport, “phics" book

The Track

Computer science is the scientific (or STEM) study of:

what problems can be solved,
what tasks can be accomplished,
and what features of the world can be understood ...

... computationally, that is, using a language with only:

> Teach computer programming! > 2 nouns (‘0’, 1°),
. 3 verbs (‘move’, ‘print’, ‘halt’),
(P roced u ral’ 0-o, fU nctl onal) 3 grammar rules (sequence, selection, repetition),

and nothing else,

and then to provide algorithms to show how this can be done:

efficiently,
practically,
physically,
and ethically.

— Rapaport, “phics" book

What about Turner?!?

|. A Hard Question ...

Easy Question

Easy Question

What is pure procedural programming!?

Another Easy Question

Another Easy Question

What is pure functional programming?

A Hard Question

A Hard Question

What is pure logic programming!?

A Hard Question

What is pure logic programming?

A Hard Question

What is pure logic programming!?

Naveen: “Using automated
theorem provers ...”

2. Leibniz’s Universal Calculus Found ...

Leibniz

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

“Universal
Cognitive
Calculus”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

Universal

“Universal -
Cognitive Cognitive
Calculus” Calculus
Found
2016

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

2018

Universal

“Universal - .
Cognitive Cognitive DCEC
Calculus” Calculus -
Found
2016 2018

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Universal

“Universal - .
Cognitive Cognitive DCEC
Calculus” Calculus
Found
2016 2018

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?
“Sorry, not impressed.”

Selm

2018

RA 1R

Rensselaer Al and Reasoning Lab

“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

Selmer Bringsjord

2018

RA 1R

Rensselaer Al and: Reasoning Lab

Universal

“Universal >)
Cognitive Cognitive DCEC
Calculus” Calculus

Found

2016 2018

Al of Today: What Would Leibniz Say?
“Sorry, not impressed.”
Selmer Bringsiord R A I R

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

Rensselaer Al and Reasoning Lab

“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

1716

Pure General L mming (PGLP)

R

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?
“Sorry, not impressed.”

Selm

2018

RA 1R

Rensselaer Al and: Reasoning Lab

“Universal
Cognitive
Calculus”

Universal
Cognitive
Calculus
Found

Leibniz

|.5 centuries < Boole!

2.5 centuries < Kripke
vindicated by Robinson 2.5 centuries later

2016

Al of Today: What Would Leibniz Say?

“Sorry, not impressed.”

2018

RA 1R

Rensselaer Al and Reasoning Lab

Leibniz’s Dream of the
Universal Cognitive Calculus

Leibniz’s Dream of the
Universal Cognitive Calculus

| have come to understand that everything ... which algebra
proves is only due to a higher science, which | now usually call a
combinatorial characteristic, though it is far different from what
may first occur to someone hearing these words. ... Yet |
should venture to say that nothing more effective can well be
conceived for perfecting the human mind and that if this basis for
philosophizing is accepted, there will come a time, and it will be
soon, when we shall have as certain knowledge of God and the
mind as we now have of figures and numbers and when the
invention of machines will be no more difficult than the

construction of geometric problems.
(Leibniz, 1675)

Leibniz’s Dream of the
Universal Cognitive Calculus

Leibniz’s Dream of the
Universal Cognitive Calculus

This is undoubtedly one of the greatest projects to which
men have ever set themselves. It will be an instrument even
more useful to the mind than telescopes or microscopes are
to the eyes. Every line of this writing will be equivalent to a
demonstration. The only fallacies will be easily detected
errors in calculation. This will become the great method of
discovering truths, establishing them, and teaching them

irresistibly when they are established.
(Leibniz, 1679)

Leibniz’s Dream of the
Universal Cognitive Calculus

Leibniz’s Dream of the
Universal Cognitive Calculus

| certainly believe that it is useful to depart
from rigorous demonstration in geometry
because errors are easily avoided there, but in
metaphysical and ethical matters | think we
should follow the greatest rigor. Yet if we had
an established characteristic we might reason
as safely in metaphysics as in mathematics.
(Leibniz, 1679)

E.g., re. the dream of the
Universal Cognitive Calculus

E.g., re. the dream of the
Universal Cognitive Calculus

When we lack sufficient data to drive at
certainty in our truths, it would also serve
to estimate degrees of probability and to

see what is needed to provide this certainty.
(Leibniz, 1679)

3. The Space of Particular Logical Calculi

Logical Calculi

Finitary

“textbook” Al (< FOL)

Logical Calculi

Finitary

Logical Calculi

Finitary

Mathematics (classical, classroom)

Logical Calculi

Finitary

Logical Calculi

Finitary

Logical Calculi

Finitary

Analogical Inductive Reasoning (formal & hence suitable for automation & verification)

Logical Calculi

Finitary

Logical Calculi

Finitary

Four Hierarchies

A"™H (Analytic Hierarchy)

Infinite Time Turing Machines (ITTMs) |

Human Persons
(according to Bringsjord)

A" H (Arithmetic Hierarchy)

Human Brains
(according to Granger)

CH (Chomsky Hierarchy)

Turing Machines (TMs)

A

(decidable formulae) Linear Bounded Automata (LBAs)

Push Down Automata (PDAs)

Finite State Automata (FSASs)

Space of Some Logical Calculi in Five Dimensions

Extensionsal oo CCoo

CCk,k <3 HOL (extensional) 2

4. Ingredients for Making a PGLP Program

On the Anatomy of a PGLP Program

On the Anatomy of a PGLP Program

Linguistics

Ly metwieceh anguage ({8} -9 A {g}F0) by, {8} 10
L'lf meta-level| language dx I‘ank(gb) =X {gb} —y U }: 0
L object-level language ¢ w 5

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({@} F Y A {Y} F)y, {¢}F 6
L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢

L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

On the Anatomy of a PGLP Program

Linguistics

Ly metwieceh anguage ({8} -9 A {g}F0) by, {8} 10

L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metwieceh anguage ({8} -9 A {g}F0) by, {8} 10

L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metwieceh anguage ({8} -9 A {g}F0) by, {8} 10

L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metwieceh anguage ({8} -9 A {g}F0) by, {8} 10
L'lf meta-level| language dx I‘ank(gb) =X {gb} —y U }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = Py

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({@} F Y A {Y} F)y, {¢}F 6
L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢

L object-level language ¢ w 5 C,%

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = P + ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({@} F Y A {Y} F)y, {¢}F 6
L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢

L object-level language ¢ w 5 C,%

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

+ ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

Ly metwieceh anguage ({8} -9 A {g}F0) by, {8} 10

L'lf meta-level| language dx rank(¢p) =z {o}F Y UE ¢
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

L:=(L,T)

7)
F (C :

|

checker

H <Y‘N’U 5‘7‘:(3)‘@23»
77(3)‘04(3) — <Y‘N‘U 5>

5. Example |: Ethical Control

via a Program Based on
DCEC* + ShadowProver ...

A Trolley Dilemma

i%

Ee =

Doctrine of Double Effect DDE

Doctrine of Double Effect DDE

® A long-studied (!) ethical principle that adjudicates certain
class of moral dilemmas.

Doctrine of Double Effect DDE

® A long-studied (!) ethical principle that adjudicates certain
class of moral dilemmas.

e The Doctrine of Double Effect “comes to the rescue” and
prescribes what to do in some moral dilemmas.

Doctrine of Double Effect DDE

® A long-studied (!) ethical principle that adjudicates certain
class of moral dilemmas.

e The Doctrine of Double Effect “comes to the rescue” and
prescribes what to do in some moral dilemmas.

® E.g.the “original” moral dilemma: Can you defend your
own life by ending the lives of (perhaps many) attackers?

Doctrine of Double Effect DDE

e A Iongéstudied () ethical principle that adjudicates certain
class of moral dilemmas.

e The Doctrine of Double Effect “comes to the rescue” and
prescribes what to do in some moral dilemmas.

® E.g.the “original” moral dilemma: Can you defend your
own life by ending the lives of (perhaps many) attackers?

Informal Version of DDE

the action is not forbidden (where we assume an ethical hier-
archy such as the one given by Bringsjord [2017], and require
that the action be neutral or above neutral in such a hierarchy);

the net utility or goodness of the action is greater than some
positive amount ;

the agent performing the action intends only the good effects;
the agent does not intend any of the bad effects;

the bad effects are not used as a means to obtain the good ef-
fects; and

if there are bad effects, the agent would rather the situation be
different and the agent not have to perform the action. That is,
the action is unavoidable.

Informal Version of DDE

the action is not forbidden (where we assume an ethical hier-
archy such as the one given by Bringsjord [2017], and require
that the action be neutral or above neutral in such a hierarchy);

the net utility or goodness of the action is greater than some
positive amount ;

the agent performing the action intends only the good effects;
the agent does not intend any of the bad effects;

the bad effects are not used as a means to obtain the good ef-
fects; and

if there are bad effects, the agent would rather the situation be
different and the agent not have to perform the action. That is,
the action is unavoidable.

“Univer

Univers
al)
Cognitiv

.5 centuries

Al of Today: Wt
Sory

Rensselaer Al and Reasoning Lab

AER

“Univer

Univers
al

Cognitiv i

.5 centuries

Al of Today: What Would Leibniz Say!

Sory e

2E)R,

Rensselaer Al and Reasoning Lab

“Univer

Univers
al

Cognitiv i

.5 centuries

Al of Today: What Would Leibniz Say!

Sory e

2E)R,

Rensselaer Al and Reasoning Lab

Syntax

S ::= Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

clipped : Moment x Fluent x Moment — Formula

initiates : Event x Fluent x Moment — Formula

terminates : Event X Fluent x Moment — Formula

| prior : Moment x Moment — Formula

“Univer Univers 66) tu=x:8|c:S| f(t1,...,tn)
|
P — ¢t : Formula | =0 | 0 AW | 0V w | P(a,t,0) | K(a,t,0) | C(t,0)

Cognitiv

¢ == q S(a,b,1,0) | S(a,t,0) | B(a,1,9) | D(a,t,Holds(f,t")) | L(a,t,6)
— O(a,t,9, (—)happens(action(a*,a),t’))

.5 centuries

Syntax

S ::= Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

clipped : Moment x Fluent x Moment — Formula

initiates : Event x Fluent x Moment — Formula

terminates : Event X Fluent x Moment — Formula

| prior : Moment x Moment — Formula

“Univer Univers 66) tu=x:8|c:S| f(t1,...,tn)
|
P — ¢t : Formula | =0 | 0 AW | 0V w | P(a,t,0) | K(a,t,0) | C(t,0)

Cognitiv

¢ == q S(a,b,1,0) | S(a,t,0) | B(a,1,9) | D(a,t,Holds(f,t")) | L(a,t,6)
— O(a,t,9, (—)happens(action(a*,a),t’))

.5 centuries

Syntax

S ::= Object | Agent | ActionType | Action C Event | Moment | Formula | Fluent
(action : Agent x ActionType — Action

initially : Fluent — Formula

Holds : Fluent x Moment — Formula

happens : Event x Moment — Formula

clipped : Moment x Fluent x Moment — Formula

initiates : Event x Fluent x Moment — Formula

terminates : Event X Fluent x Moment — Formula

| prior : Moment x Moment — Formula

“Univer Univers 66) tuo=x:8|c: S| ftr,... tn)
|
<! _— t: Formula | =0 | 0 AW [0V | P(a,1,0) | K(a,1,0) | C(t,0)

Cognitiv
¢ == q S(a,b,1,0) | S(a,t,0) | B(a,1,9) | D(a,t,Holds(f,t")) | L(a,t,6)
- O(a,t,9, (—)happens(action(a*,a),t’))

crss e o K(a,,I), TFO, 1<t B(a,t;,T), THO, 1 <t
. Rl

K(a7t27¢) B(a7t27¢)
(R,]

.5 centuries C(t,P(a,t,0) — K(a,t,0)) Ra] C(t,K(a,t,9) — B(a,t,0))

Ct,0)t<t;...t<t, K(a,t,0)
(R3]
K(al,tl,...K(a,,,t,,,q))...) q)

&z
; Inference Schemata
W

[R4]

[Rs]
[Rs]

C(Z,K(d,l] 7¢1 — ¢2)) — K(aat27¢l) - K(a1137¢2)

C(Z7B(a7t1a¢l - ¢2)) - B(d,lz,(})]) - B(a7t37¢2)
[Ri]

C(t,C(t1,01 = ¢2)) = C(t2,01) — C(83,02)
[Rs]

[Ro]

C(t,Vx. § — Ox —1]) C(2,01 <> G2 — —0, =)

[R1o]

Clt,[p1 A Aw = 0] = 01— ... > 0 = ¥])
S(s,h,t,0) R I(a,t,happens(action(a*,a),t')) -
B(h,t,B(s,2,0)) [Ri2] P(a,t,happens(action(a*,a),1)) [Ris]
B(a,1,0) B(a,1,0(a,1,0,%)) O(a,1,0,%)

K(a,t,1(a,t,%))

[R14]

Formal Conditions for DDE

F;1 o carried out at ¢ is not forbidden. That is:

r'/-0 (a, t,0,—happens (action(a, a), t))

F, The net utility is greater than a given positive real 7:

H
r-) (Y ufy)- Y, ﬂ(f,y)) >y

y=t+1 \ feo)' feos!

F3, The agent a intends at least one good effect. (F, should
still hold after removing all other good effects.) There is

at least one fluent f, in o’ with p(f,,y) > 0, or f;, in

of’ with 1 (fp,) <0, and some y with < y < H such
that the following holds:

if, € oc?’t I(a,t,Holds(fg,y))
'+ \%

3, € a2 I(a,t,ﬁHolds(fb,y))

F3, The agent a does not intend any bad effect. For all fluents

fp in o with u(fy,y) <0, or f, in o’ with u(f,y) >
0, and for all y such that t < y < H the following holds:

T - 1(a,t, Holds(f3,)) and

I (a, t, ﬁHOldS(fgay))

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of [> above, hold
here. One such permutation is shown below. For any bad
fluent fj holding at #1, and any good fluent fg holding at
some #;, such that ¢ < t1,# < H, the following holds:

k- (Hozds(fb,tl) ,HoldS(ngZ))

Formal Conditions for DDE

F;1 o carried out at ¢ is not forbidden. That is:

r'/-0 (a, t,0,—happens (action(a, a), t))

F, The net utility is greater than a given positive real 7:

H
r- Y (Y ufy)- Y u(f,y>) >y

y=t+1 \ feo}' feos!

F3, The agent a intends at least one good effect. (F, should
still hold after removing all other good effects.) There is
at least one fluent f, in o’ with p(f,,y) > 0, or f;, in

o’ with u(fp,y) <0, and some y with t < y < H such
that the following holds: Pppg, + ShadowProver

if, € oc;‘” I(a,t,Holds(fg,y))
'+ \%

3, € a2 I(a,t,ﬁHolds(fb,y))

F3, The agent a does not intend any bad effect. For all fluents

fy in 0" with p(f,y) <0, or f in g’ with u (fy,) >
0, and for all y such that # < y < H the following holds:

T }Ll(a,t,Holds(fb,y)) and

T} I(a,t, ﬁHolds(fg,)’))

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of [> above, hold
here. One such permutation is shown below. For any bad
fluent fj holding at #1, and any good fluent fg holding at
some #;, such that ¢ < #1,# < H, the following holds:

k- (Holds(fb,tl) ,HoldS(ngZ))

Formal Conditions for DDE

F1 o carried out at ¢ is not forbidden. That is:

r'/-0 (a, t,0,—happens (action(a, a), t))

F, The net utility is greater than a given positive real 7:

H
r-) (Y ufy)- Y, ﬂ(f,y)> >y

y=t+1 \ feo)' feos!

F3, The agent a intends at least one good effect. (F, should
still hold after removing all other good effects.) There is

at least one fluent f, in o’ with p(f,,y) > 0, or f;, in

of’ with u(fy,y) <0, and some y with t <y < H such
that the following holds: Pppe, + ShadowProver

3f, € aff I(a,t,HoldS(ng)) © O

rF v
3, € a2 I(a,t,ﬁHolds(fb,y))

F3, The agent a does not intend any bad effect. For all fluents

fp in o with u(fy,y) <0, or f, in o’ with u(f,y) >
0, and for all y such that t < y < H the following holds:

T - 1(a,t, Holds(f3,)) and

I (a, t, ﬁHOldS(fgay)>

F4 The harmful effects don’t cause the good effects. Four
permutations, paralleling the definition of [> above, hold
here. One such permutation is shown below. For any bad
fluent fj holding at #1, and any good fluent fg holding at
some #;, such that ¢ < t1,# < H, the following holds:

k- (Hozds(fb,tl) ,HoldS(ngZ))

©0

©0

/. Toward Mundane Examples ...

/. Toward Mundane Examples ...

!

Introduction fi'
0 . \I
Logic B
Programming

Christopher John Hogger

)
i

/. Toward Mundane Examples ...

0%1 + ShadowProver

Programming

Christopher John Hogger

Hogger’s “Simple”Switch Example
(pp- 2-3)

|/

_—
l t@: ?@;‘ @
l° OFF o

Hogger’s “Simple”Switch Example
(pp- 2-3)

" o /o N1y
‘OFF @ Q @

[On (b1, on A On(b2, on A On(b3, off)] — O(SwitchState(on))

Hogger’s “Simple”Switch Example
(pp- 2-3)

" o /o N1y
‘OFF @ Q @

[On (b1, on A On(b2, on A On(b3, off)] — O(SwitchState(on))

Hogger’s “Simple”Switch Example
(pp- 2-3)

7 < Q

[On (b1, on A On(b2, on A On(b3, off)] — O(SwitchState(on))

Hogger’s “Simple”Switch Example
(pp- 2-3)

o ./ N1y
EEIR"

[On (b1, on A On(b2, on A On(b3, off)] — O(SwitchState(on))

What kind of Al/program
do we want in place
when there isn’t a human
in the loop who can
throw in a “wrench’™?

finis

