#### Propositional Calculus I:

# The Formal Language, The Prop. Calc. Oracle (= AI), Application to Some Motivating Problems

#### Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to (Formal) Logic 1/30/2020



#### How'd We Arrive Here?

(Selmer's Leibnizian Whirlwind History of Logic)

#### Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic 1/27/2020



#### How'd We Arrive Here?

(Selmer's Leibnizian Whirlwind History of Logic)

#### Selmer Bringsjord

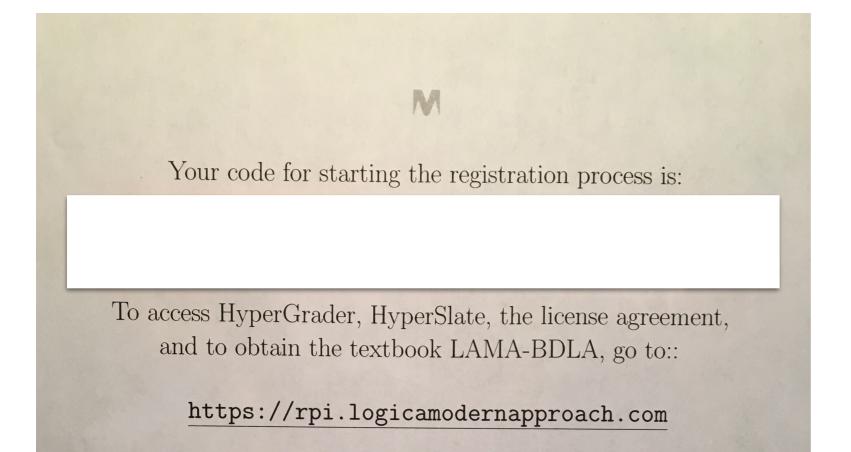
Rensselaer AI & Reasoning (RAIR) Lab

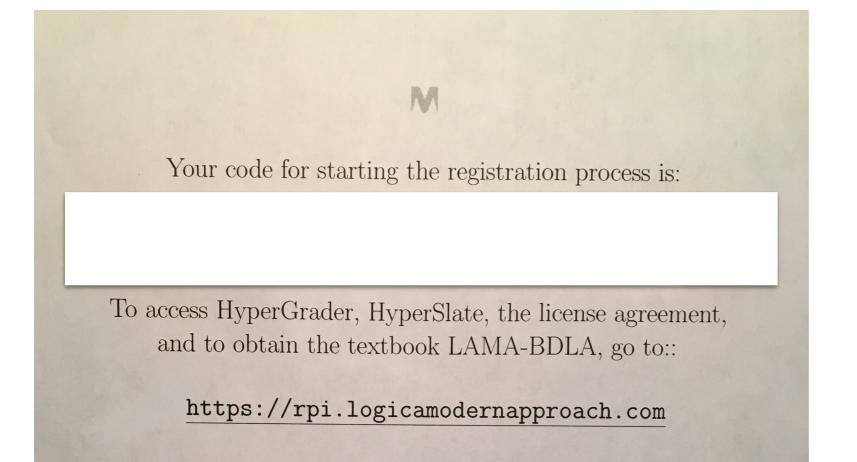
Cognitive Science

Lepath CSTKO In Ser Science

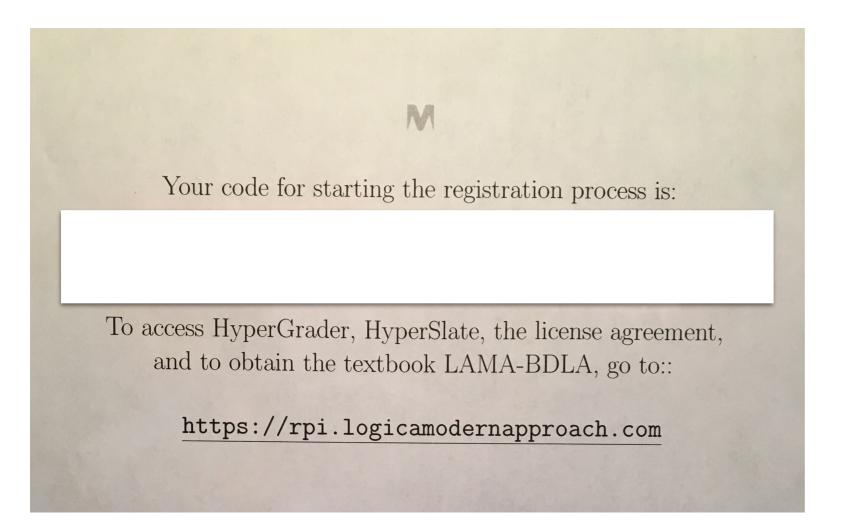
Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)


Troy, New York 12180 USA

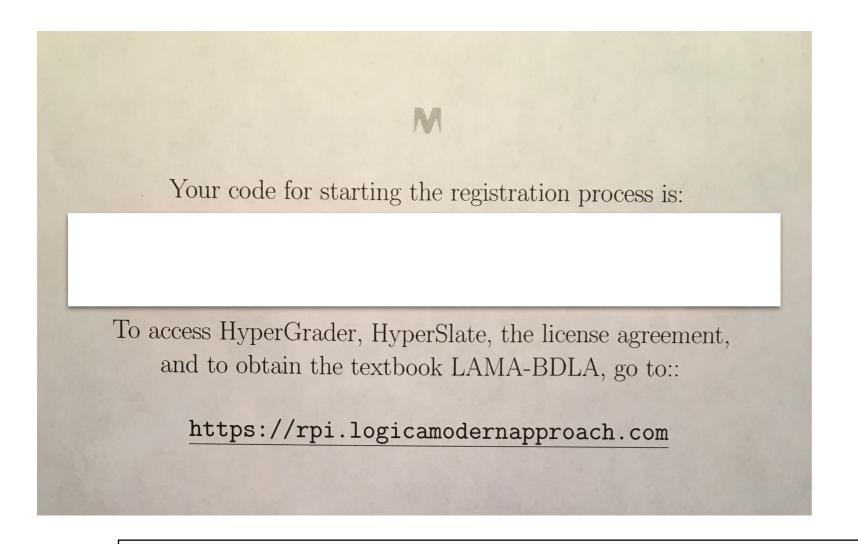

Intro to Logic 1/27/2020




# Logistics ...

The Starting Code Purchased in Bookstore Should By Now've Been Used to Register & Subsequently Sign In

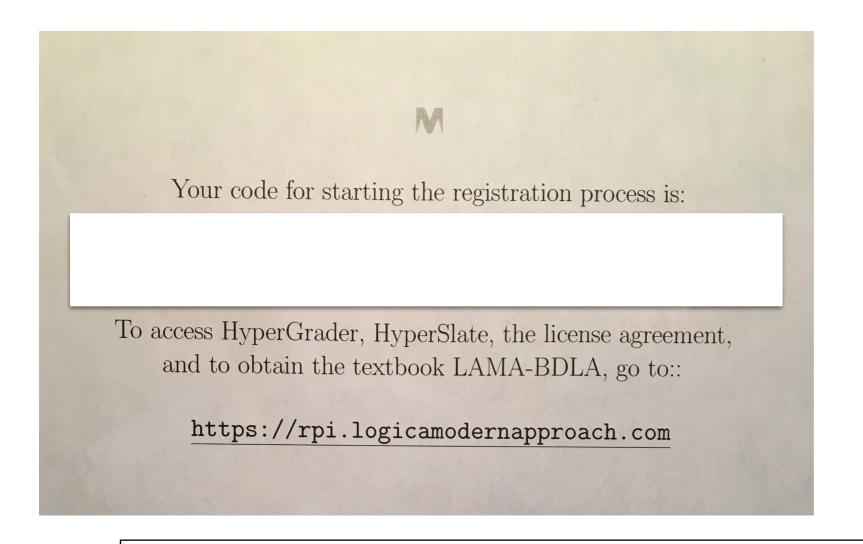





Once seal broken on envelope, no return. Remember from first class, any reservations, opt for "Stanford" paradigm, with its software instead of LAMA<sup>TM</sup> paradigm!



Once seal broken on envelope, no return. Remember from first class, any reservations, opt for "Stanford" paradigm, with its software instead of LAMA<sup>TM</sup> paradigm!


The email address you enter is case-sensitive!



Once seal broken on envelope, no return. Remember from first class, any reservations, opt for "Stanford" paradigm, with its software instead of LAMA<sup>TM</sup> paradigm!

The email address you enter is case-sensitive!

Your OS and browser must be fully up-to-date; Chrome is the best choice, browser-wise (though I use Safari).



Once seal broken on envelope, no return. Remember from first class, any reservations, opt for "Stanford" paradigm, with its software instead of LAMA<sup>TM</sup> paradigm!

The email address you enter is case-sensitive!

Your OS and browser must be fully up-to-date; Chrome is the best choice, browser-wise (though I use Safari).

Watch that the link doesn't end up being classified as spam.

#### How'd We Arrive Here?

(Selmer's Leibnizian Whirlwind History of Logic)

#### Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management & Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Logic 1/24/2020



#### How'd We Arrive Here?

(Selmer's Leibnizian Whirlwind History of Logic)

#### Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab

partment of Cognitive Science

Leputh CSTKO In Ser Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)

Troy, New York 12180 USA

Intro to Logic 1/24/2020



skipping to ~ p. 34!

skipping to ~ p. 34!



skipping to ~ p. 34!



M. Chi: Self-testers end up being self-made.

skipping to ~ p. 34!



M. Chi: Self-testers end up being self-made.

skipping to ~ p. 34!



M. Chi: Self-testers end up being self-made.

"What category of English sentences does logic focus on?"

#### CHAPTER 2. PROPOSITIONAL CALCULUS

| Syntax                                                   | Formula Type                  | Sample Representation                                                  |
|----------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|
| P, P <sub>1</sub> , P <sub>2</sub> , Q, Q <sub>1</sub> , | Atomic Formulas               | "Larry is lucky." as L <sub>l</sub>                                    |
| $ eg oldsymbol{\phi}$                                    | Negation                      | "Gary isn't lucky." as ¬Lg                                             |
| $\phi_1 \wedge \ldots \wedge \phi_n$                     | Conjunction                   | "Both Larry and Carl are lucky." as $L_l \wedge L_c$                   |
| $\phi_1 \vee \vee \phi_n$                                | Disjunction                   | "Either Billy is lucky or Alvin is." as $L_b \vee L_a$                 |
| $\phi \rightarrow \psi$                                  | Conditional (Implication)     | "If Ron is lucky, so is Frank." as $L_r \rightarrow L_f$               |
| $\phi \longleftrightarrow \psi$                          | Biconditional (Coimplication) | "Tim is lucky if and only if Kim is." as $L_t \longleftrightarrow L_k$ |

Table 2.1: Syntax of the Propositional Calculus. Note that  $\phi$ ,  $\psi$ , and  $\phi_i$  stand for arbitrary formulas.

#### CHAPTER 2. PROPOSITIONAL CALCULUS

| Syntax                                                   | Formula Type                  | Sample Representation                                                  |
|----------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|
| P, P <sub>1</sub> , P <sub>2</sub> , Q, Q <sub>1</sub> , | Atomic Formulas               | "Larry is lucky." as L <sub>l</sub>                                    |
| $ eg oldsymbol{\phi}$                                    | Negation                      | "Gary isn't lucky." as ¬Lg                                             |
| $\phi_1 \wedge \ldots \wedge \phi_n$                     | Conjunction                   | "Both Larry and Carl are lucky." as $L_l \wedge L_c$                   |
| $\phi_1 \vee \vee \phi_n$                                | Disjunction                   | "Either Billy is lucky or Alvin is." as $L_b \vee L_a$                 |
| $\phi \rightarrow \psi$                                  | Conditional (Implication)     | "If Ron is lucky, so is Frank." as $L_r \rightarrow L_f$               |
| $\phi \longleftrightarrow \psi$                          | Biconditional (Coimplication) | "Tim is lucky if and only if Kim is." as $L_t \longleftrightarrow L_k$ |

Table 2.1: Syntax of the Propositional Calculus. Note that  $\phi$ ,  $\psi$ , and  $\phi_i$  stand for arbitrary formulas.

Exercise: Is this language Roger-decidable? Prove it!

(presented as formal grammar)

```
Formula \Rightarrow AtomicFormula
\mid (Formula \ Connective \ Formula)
\mid \neg Formula
```

$$AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots$$

$$Connective \Rightarrow \land | \lor | \rightarrow | \leftrightarrow$$

(presented as formal grammar)

Exercise: Is this language Roger-decidable? Prove it!

```
Formula \Rightarrow AtomicFormula | (Formula Connective Formula) | \neg Formula | AtomicFormula \Rightarrow P_1 | P_2 | P_3 | \dots

Connective \Rightarrow \land | \lor | \rightarrow | \leftrightarrow

P bradyisleaving P26 ••••
```

```
Formula
                          Atomic Formula
                           (Formula Connective Formula)
                           \neg Formula
 AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
 Connective \qquad \Rightarrow \quad \land \mid \lor \mid \rightarrow \mid \leftrightarrow
P bradyisleaving
                                                            P26
```

```
Atomic Formula
               Formula
                                    (Formula Connective Formula)
                                     \neg Formula
               AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
               Connective \Rightarrow \land |\lor| \rightarrow |\leftrightarrow
             P bradyisleaving
                                                                 P26
(not p)
```

```
Formula
                                       Atomic Formula
                                       (Formula Connective Formula)
                                       \neg Formula
                 AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                 Connective \qquad \Rightarrow \quad \land \mid \lor \mid \rightarrow \mid \leftrightarrow
                P bradyisleaving P26
+ (not p) (not P)
```

```
Formula
                                 \Rightarrow AtomicFormula
                                     (Formula Connective Formula)
                                      \neg Formula
                 AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                 Connective \qquad \Rightarrow \quad \land \mid \lor \mid \rightarrow \mid \leftrightarrow
               P bradyisleaving P26
+ (not p) (not P) (not P26)
```

```
Formula
                                 \Rightarrow AtomicFormula
                                     (Formula Connective Formula)
                                     \neg Formula
                 AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                 Connective \qquad \Rightarrow \quad \land \mid \lor \mid \rightarrow \mid \leftrightarrow
               P bradyisleaving P26
+ (not p) (not P) (not P26)
```

```
Formula
                              \Rightarrow AtomicFormula
                                  (Formula Connective Formula)
                                  \neg Formula
               AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
               Connective \Rightarrow \land |\lor| \rightarrow |\leftrightarrow
          P bradyisleaving P26
+ (not p) (not P) (not P26)
```

```
Formula
                                 \Rightarrow AtomicFormula
                                     (Formula Connective Formula)
                                     \neg Formula
                   AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                   Connective \Rightarrow \land |\lor| \rightarrow |\leftrightarrow
              P bradyisleaving P26
    + (not p) (not P) (not P26)
(and P Q)
```

### As S-expressions

```
Formula
                                   \Rightarrow AtomicFormula
                                      (Formula Connective Formula)
                                      \neg Formula
                    AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                    Connective \qquad \Rightarrow \quad \land \mid \lor \mid \rightarrow \mid \leftrightarrow
              P bradyisleaving P26
    + (not p) (not P) (not P26)
(and P Q) (or P Q)
```

### As S-expressions

```
\Rightarrow AtomicFormula
                 Formula
                                  (Formula Connective Formula)
                                  \neg Formula
                 AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                 Connective \Rightarrow \land |\lor| \rightarrow |\leftrightarrow
            P bradyisleaving P26
    + (not p) (not P) (not P26)
(and P Q) (or P Q) (if P Q)
```

### As S-expressions

```
\Rightarrow AtomicFormula
                Formula
                                (Formula Connective Formula)
                                \neg Formula
                AtomicFormula \Rightarrow P_1 \mid P_2 \mid P_3 \mid \dots
                Connective \Rightarrow \land |\lor| \rightarrow |\leftrightarrow
            P bradyisleaving P26
    + (not p) (not P) (not P26)
(and PQ) (or PQ) (if PQ) (iff PQ)
```

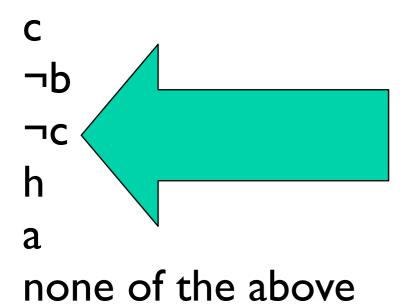
### Better Formal Language: Pure Predicate Calculus (presented via formal grammar)

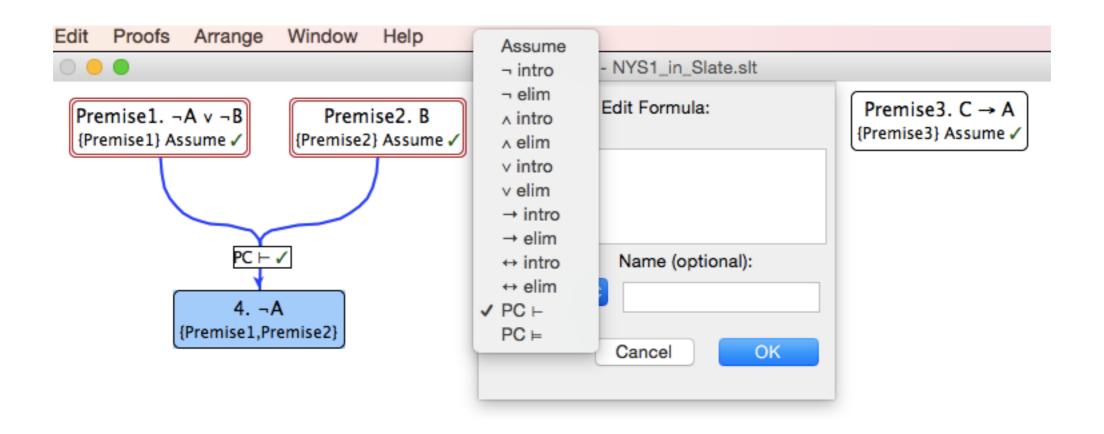
```
Formula
                         \Rightarrow AtomicFormula
                               (Formula Connective Formula)
                               \neg Formula
AtomicFormula \Rightarrow (Predicate\ Term_1 \dots Term_k)
Term
                               (Function \ Term_1 \ \dots \ Term_k)
                               Constant
                                Variable
                        \Rightarrow \land | \lor | \rightarrow | \leftrightarrow
Connective
                        \Rightarrow P_1 \mid P_2 \mid P_3 \dots
Predicate
                        \Rightarrow c_1 \mid c_2 \mid c_3 \dots
Constant
                        \Rightarrow v_1 \mid v_2 \mid v_3 \dots
Variable
                        \Rightarrow f_1 \mid f_2 \mid f_3 \dots
Function
```

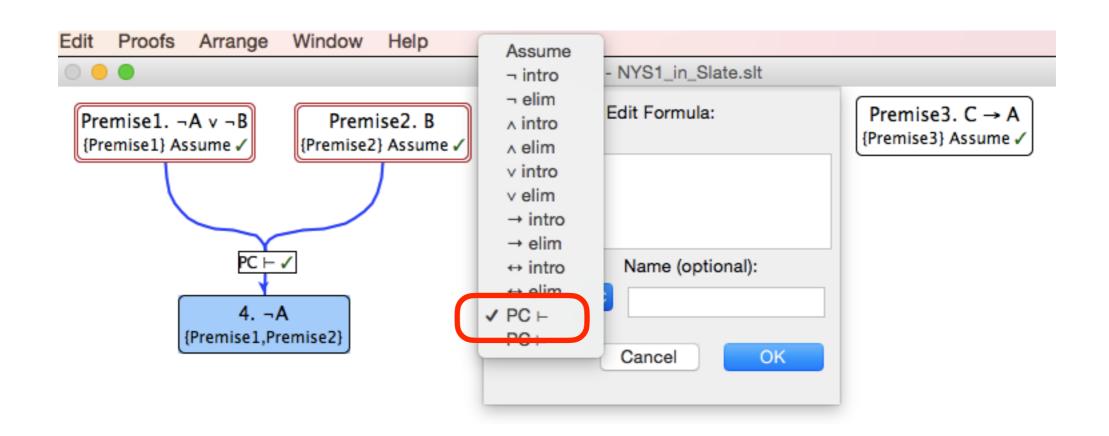
### Better Formal Language: Pure Predicate Calculus (presented via formal grammar)

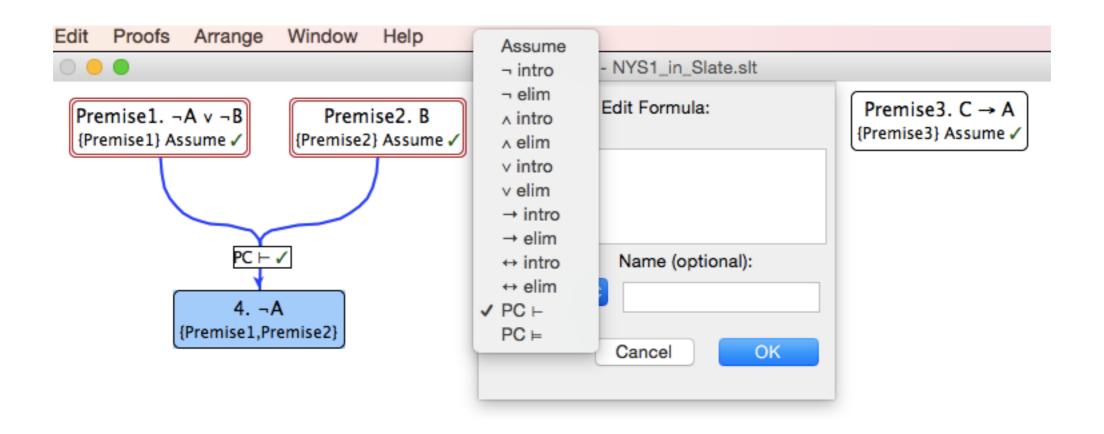
```
Formula
                         \Rightarrow AtomicFormula
                                (Formula Connective Formula)
                                \neg Formula
AtomicFormula \Rightarrow (Predicate\ Term_1 \dots Term_k)
Term
                               (Function \ Term_1 \ \dots \ Term_k)
                                Constant
                                Variable
Connective
                         \Rightarrow \land \mid \lor \mid \rightarrow \mid \leftrightarrow
                         \Rightarrow P_1 \mid P_2 \mid P_3 \dots
Predicate
                        \Rightarrow c_1 \mid c_2 \mid c_3 \dots
Constant
                         \Rightarrow v_1 \mid v_2 \mid v_3 \dots
Variable
                         \Rightarrow f_1 \mid f_2 \mid f_3 \dots
Function
```

Exercise: Is this language also Roger-decidable? Prove it!


### "NYS I" Revisited


#### Given the statements


```
c
¬b
¬c
h
a
none of the above
```


### "NYS I" Revisited

Given the statements









### "NYS 3" Revisited

Given the statements

```
abla 
abl
```

```
¬c
e
h
¬a
all of the above
```

### "NYS 3" Revisited

Given the statements

```
abla 
abl
```

```
e
h
¬a
all of the above
```

#### "NYS 3" Revisited

#### Given the statements

¬¬c
c → a
¬a ∨ b

 $b \rightarrow d$ 

 $\neg (d \lor e)$ 

Show in <u>Hyper</u>Slate that each of the first four options can be proved using the PC entailment oracle.

which one of the following statements must also be true?

e
h
¬a
all of the above