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King-Ace Solved

Proposition: There is not an ace in the hand.

Proof: We know that at least one of the if-thens (i.e., at least one
of the conditionals) is false. So we have two cases to consider,
viz., that K => A is false, and that =K => A is false. Take first the first
case; accordingly, suppose that K => A is false. Then it follows that
K is true (since when a conditional is false, its antecedent holds but
its consequent doesn’t), and A is false. Now consider the second
case, which consists in 7K => A being false. Here, in a direct
parallel, we know =K and, once again, 7A. In both of our two cases,
which are exhaustive, there is no ace in the hand. The proposition
is established. QED
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We need another rule of inference
to crack this problem ... ...

disjunction elimination



From ~ p. 54 in LAMA-BDLA

from each ¢;, then we may conclude . That is, if we can, for each ¢;, assume ¢;
and show that ¢ follows, then we may conclude y from the disjunction ¢, V...V @,
and the derivations of y. There is one more subtle point, however. In the days-of-
the-week example above, the conclusion that Susan has class on a weekday should
not be in the scope of both the assumptions that she has class on Monday and that
she has class on Tuesday; these assumptions are discharged. Disjunction elimination
discharges each assumption ¢; from the line of reasoning that corresponds to that

case.
[mv...vcpn} [ Y } [ Y 1
o {@11wl; {o.lel,

Vv elim

:
ror,
[gU...Ul',

The various I'; on the premises of disjunction elimination might make this rule
seem more complicated than it really is. Their presence makes it clear that the only
assumptions discharged from each line of reasoning is the assumption corresponding
to that particular case.

(2.25)
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discharges each assumption ¢; from the line of reasoning that corresponds to that

case.
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:
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[gU...Ul',

The various I'; on the premises of disjunction elimination might make this rule
seem more complicated than it really is. Their presence makes it clear that the only
assumptions discharged from each line of reasoning is the assumption corresponding
to that particular case.
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King-Ace 2

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in
the hand; or if there isn’t a king in the hand, then
there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise?

NO!—Fhere-is-anace-inthe -hand—NO!

In fact, what you can infer is that there isn’t an ace in the hand!
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Exercise (on HyperGrader™): Finish
the proof in HyperSlate™ — with
no remaining use of an oracle.
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