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Friday's Hill, Haslemere, 16 June 1902

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik,
but it is only now that I have been able to find the time for the thorough study I
intended to make of your work. I find myself in complete agreement with you in all
essentials, particularly when you reject any psychological element [Moment]) in logic
and when you place a high value upon an ideography [[Begriffsschrift] for the founda-
tions of mathematics and of formal logic, which, incidentally, can hardly be dis-
tinguished. With regard to many particular questions, I find in your work discussions,
distinctions, and definitions that one seeks in vain in the works of other logicians.
Especially so far as function is concerned (§ 9 of your Begriffsschrift), I have been led
on my own to views that are the same even in the details. There is just one point
where I have encountered a difficulty. You state (p. 17 [p. 23 above])) that a function,
too, can act as the indeterminate element. This I formerly believed, but now this view
seems doubtful to me because of the following contradiction. Let w be the predicate :
to be a predicate that cannot be predicated of itself. Can w be predicated of itself?
From each answer its opposite follows. Therefore we must conclude that w is not a
predicate. Likewise there is no class (as a totality) of those classes which, each taken
as a totality, do not belong to themselves. From this I conclude that under certain
circumstances a definable collection [[Menge]] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I
should like to discuss your work very thoroughly.! I already have your books or shall
buy them soon, but I would be very grateful to you if you could send me reprints of
your articles in various periodicals. In case this should be impossible, however, I will
obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has
remained very much behind ; in your works I find the best I know of our time, and
thereforel I have permitted myself to express my deep respect to you. It is very
regrettable that you have not come to publish the second volume of your Grund-
gesetze ; 1 hope that this will still be done.

Very respectfully yours,

BERTRAND RUSSELL

The above contradiction, when expressed in Peano’s ideography, reads as follows :

w=clsnzsr ~ex)diwew.=. w ~ew.
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RussellsLetter2Frege

The challenge here is to prove that from Russell's instantiation of Frege's doomed Axiom V a contradiction can be promptly
derived. The letter has of course been examined in some detail by S Bringsjord (in the Mar 16 2020 lecture in the 2020
lecture lineup); it, along with an astoundingly soft-spoken reply from Frege, can be found here. Put meta-logically, your task
in the present problem is to build a proof that confirms this:

{Fzvy((yez) = (Y £ y))}FCAC

Make sure you understand that the given here is an instantiation of Frege’s Axiom V; i.e. it's an instantiation of

JzVy((y € ) = ¢(y))-

(The notation ¢(y), recall, is the standard way in mathematical logic to say that y is free in ¢.) Note: Your finished proof is
allowed to make use the PC-provability oracle (but only that oracle).

(Now a brief remark on matters covered by in class by Bringsjord when second-order logic = _% arrives on the scene: Longer
term, and certainly constituting evidence of Frege's capacity for ingenius, intricate deduction, it has recently been realized
that while Frege himself relied on Axiom V to obtain what is known as Hume's Principle (= HP), this reliance is avoidable.
That from just HP we can deduce all of Peano Arithmetic (PA) (!) is a result Frege can be credited with showing; the result is
known today as Frege's Theorem (= FT). Following the link just given will reward the reader with an understanding of HP, and
how how to obtain PA from it.)

Deadline 22 Apr 2020 23:59:00 EST
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Proof: N is defined by a finite string taken from the
English alphabet, so N is in the sequence E. But on the
other hand, by definition of N, for every m, N differs from
the m-th element of E in at least one decimal place;so N
is not any element of E. Contradiction! QED
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where r and y are distinct, and are both distinct from z and the x;;
and, as usual for us now, ¢ expresses a property using €.

“Given beforehand some set x and property &
captured by a formula ¢ that uses € for its relation,
the set y composed of {7z € x : P(7)} exists.”

How does this neutralize
Russell’s letter to Frege!
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where ¢(x) is open witf with variable x, and perhaps others, free.
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We've already seen it in our coverage of ZFC.

Fy[s(s(0)) x y = s(s(s(s(0)))).
This says what!

That 2 multiplied by some number yields 4.

But this is very specific: the successor
of the successor of zero is specifically 2.

Here then is the general case with an “open” wiff:
Fyls(s(0)) x y = ]

This open wff ¢(x)expresses the arithmetic property ‘even’
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