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Abstract

Dualists since at least Descartes have insisted that mental states such as fearing ghosts, as well
as the bearers of such states (i.e., persons, or minds), are immaterial (= non-physical). But
a different class of candidates for immateriality is to be found in the formal sciences. These
candidates are logico-mathematical objects ranging from the familiar to the exotic. In this
chapter I focus on two sub-classes of the familiar type of such objects: (1) algorithms (such as
Quicksort, discovered by Tony Hoare); and (2) inference schemata, such as modus tollens or the
pigeonhole principle. If we suppose for the sake of argument that such objects as algorithms and
inference schemata are in fact non-physical, does it then follow that since we interact with these
objects we are non-physical as well? Yes. I defend this answer herein; the defense makes use of
the untenability of so-called “Strong” AI. This defense requires some analysis of and a response
to the eponymous Benacerraf-Field Problem, which in a word says that we can’t fathom how our
justified belief in propositions regarding logico-mathematical objects could ever be explained. I
supply this response herein. I end with brief remarks about exotic logico-mathematical objects;
specifically, cardinal numbers, and in particular the smallest one, Rq.

Logico-Mathematical Objects With Which We Interact

Universe
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1 Introduction

Chimpanzees, the chair in which I presently sit, and the chunk of aged cheddar cheese and wine
before me on the table; these things are physical, clearly. Are there any non-physical things?
Even those who would answer this question with an adamantine negative, if reflective, will agree
that perhaps the best candidates for this category are not my mental states had while enjoying
such cheddar with fine Carménere (states which dualists since Descartes have long insisted are
non-physical, since they are bearers of so-called “qualia”), but instead logico-mathematical objects
with which plenty of humans are acquainted. These immaterial objects range from the familiar to
the exotic, and are the targets of study in the formal) sciences I focus herein on two familiar
and elementary classes of such logico-mathematical objects: (1) algorithms (such as Quicksort,
discovered by Tony Hoare); and (2) inference schemata that form the foundation of the formal
sciences (such as modus tollens, that from two declarative propositions ‘if ¢ then ¢’ and ‘not-i)’
one can deduce ‘not-¢).” Inference schemata form this foundation because the formal sciences are
theorem-driven, theorems are obtained by proofs, and proofs are sequences of propositions linked
by inferences that are sanctioned by such schemata (though often the schemata employed are left
implicit and not called out by name).

The overarching structure of my case for our being immaterial will have two steps. In Step 1 I
adapt and render prior reasoning from James Ross (1992) in order to show that that such objects
as algorithms and inference schemata and are non-physical (= immaterial). Then, in Step 2, I show
that we interact with these objects in a certain crucial way: viz., we understand that we frequently
validly implement them. I then argue that such understanding entails that we must ourselves be
non-physical. Of course, inevitably some will want to resist my ultimate conclusion. Accordingly,
I consider and rebut some objections, including one based on the eponymous Benacerraf-Field
Problem, which in a word says that we can’t fathom how our justified belief in propositions regarding
logico-mathematical objects could ever be explained. When I wrap up the paper, I point out that
in point of fact algorithms and inference schemata are actually in the same category of “formal
objects,” and briefly point to some much more exotic formal objects that are likewise immaterial,
and with which we also interact. Here I specifically point to cardinal numbers, and to keep things
brief and simple, the smallest cardinal number: RNp.

2 Logico-mathematical Objects, in General

Some readers may find the phrase ‘logico-mathematical object’ to be a bit of a mouthful, and
perhaps even pedantic. Actually, the idea is quite straightforward, and the objects in question
are encountered and reasoned over by even very young schoolchildren, who usually continue in
this regard for many years, and are along the way introduced to more and more such objects of
increasing complexity. One of the first such logico-mathematical objects young children come across
is N: the set of all natural numbers
{0,1,2,...}.

This object is often called “the number line,” and of course before this object is introduced, the
young mind will have been introduced to the numbers 0, 1, 2, and so forth, and often to the
arithemtic functions of addition and subtraction. In public education in the U.S. State in which I re-
side, New York, Grade-4 mathematics instruction introduces students to a new logico-mathematical

'Pure mathematics, mathematical/theoretical physics, formal logic, decision theory, etc.
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King-Ace Solved

Proposition: There is not an ace in the hand.

Proof: We know that at least one of the if-thens (i.e., at least one
of the conditionals) is false. So we have two cases to consider,
viz., that K => A is false, and that =K => A is false. Take first the first
case; accordingly, suppose that K => A is false. Then it follows that
K is true (since when a conditional is false, its antecedent holds but
its consequent doesn’t),and A is false. Now consider the second
case, which consists in 7K => A being false. Here, in a direct
parallel, we know =K and, once again, 7A. In both of our two cases,
which are exhaustive, there is no ace in the hand. The proposition
is established. QED




Study the S-expression

Slate - king_ace_original.slt

Edit Formula:

Formula:

(and (or (if K A) (if (not K) A))
(not (and (if K A) (if (not K) A)))|

Justification: Name (optional):

Assume a Premise

cancel | (KIS

Premise. ((K = A) v (=K = A)) A =((K = A) A (-K = A))
{Premise} Assume v/
I~

E;& PCH X

[Reality. -A] [Illusion. A]

{Premise} {Premise}
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We need another rule of inference
to crack this problem ... ...

disjunction elimination



From ~ p. 54 in LAMA-BDLA

from each ¢;, then we may conclude . That is, if we can, for each ¢;, assume ¢;
and show that ¢ follows, then we may conclude y from the disjunction ¢, V...V @,
and the derivations of y. There is one more subtle point, however. In the days-of-
the-week example above, the conclusion that Susan has class on a weekday should
not be in the scope of both the assumptions that she has class on Monday and that
she has class on Tuesday; these assumptions are discharged. Disjunction elimination
discharges each assumption ¢; from the line of reasoning that corresponds to that

case.
[mv...vcpn} [ Y } [ Y 1
o {@11wl; {o.lel,

Vv elim

:
ror,
[gU...Ul',

The various I'; on the premises of disjunction elimination might make this rule
seem more complicated than it really is. Their presence makes it clear that the only
assumptions discharged from each line of reasoning is the assumption corresponding
to that particular case.

(2.25)
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Suppose that the following premise is true:
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Coming Exercise (on HyperGrader®):
Finish the proof in HyperSlate® —
with no remaining use of an oracle.

But COVID-19 will be allowed to slow
everything down.






Det er en zre d lere formell logikk!



