Rebuilding the Foundations of Math via (the "Theory") <u>ZFC;</u> ZFC to Axiomatized Arithmetic (the "Theories" <u>BA</u> and <u>PA</u>)

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> IFLAI I 3/25/2021

Questions?

Al in weapons ...

The technical paper ...

Reviewing the situation

• • •

- Deductive Paradoxes
- Inductive Paradoxes coming (e.g. The Lottery Paradox & The St Petersburg Paradox)

First:

- Deductive Paradoxes
- Inductive Paradoxes coming (e.g. The Lottery Paradox & The St Petersburg Paradox)

First:

- Deductive Paradoxes
- Inductive Paradoxes coming (e.g. The Lottery Paradox & The St Petersburg Paradox)

First:

• Deductive Paradoxes

 Inductive Paradoxes — coming (e.g. The Lottery Paradox & The St Petersburg Paradox)

https://www.megamillions.com

First:

• Deductive Paradoxes

 Inductive Paradoxes — coming (e.g. The Lottery Paradox & The St Petersburg Paradox)

https://www.megamillions.com

I in 302,575,350

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to find the time for the thorough study I intended to make of your work. I find myself in complete agreement with you in all essentials, particularly when you reject any psychological element [[Moment]] in logic and when you place a high value upon an ideography [[Begriffsschrift]] for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. With regard to many particular questions, I find in your work discussions, distinctions, and definitions that one seeks in vain in the works of other logicians. Especially so far as function is concerned (§ 9 of your Begriffsschrift), I have been led on my own to views that are the same even in the details. There is just one point where I have encountered a difficulty. You state (p. 17 [[p. 23 above]]) that a function, too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection [[Menge]] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I should like to discuss your work very thoroughly.¹ I already have your books or shall buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has remained very much behind; in your works I find the best I know of our time, and therefore I have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your *Grund-gesetze*; I hope that this will still be done.

Very respectfully yours,

BERTRAND RUSSELL

The above contradiction, when expressed in Peano's ideography, reads as follows:

 $w = \operatorname{cls} \cap x \, \mathfrak{s}(x \sim \varepsilon \, x) . \supset : w \, \varepsilon \, w \, . = . \, w \, \sim \varepsilon \, w.$

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to find the time for the thorough study I intended to make of your work. I find myself in complete agreement with you in all essentials, particularly when you reject any psychological element [[Moment]] in logic and when you place a high value upon an ideography [[Begriffsschrift]] for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. With regard to many particular questions, I find in your work discussions, distinctions, and definitions that one seeks in vain in the works of other logicians. Especially so far as function is concerned (§ 9 of your *Begriffsschrift*), I have been led on my own to views that are the same even in the details. There is just one point where I have encountered a difficulty. You state (p. 17 [[p. 23 above]]) that a function, too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection [[Menge]] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I should like to discuss your work very thoroughly.¹ I already have your books or shall buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has remained very much behind; in your works I find the best I know of our time, and therefore I have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your *Grund-gesetze*; I hope that this will still be done.

Very respectfully yours,

BERTRAND RUSSELL

The above contradiction, when expressed in Peano's ideography, reads as follows:

 $w = \operatorname{cls} \cap x \, \mathfrak{s}(x \sim \varepsilon \, x) . \supset : w \, \varepsilon \, w \, . = . \, w \, \sim \varepsilon \, w.$

 $\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \notin y)$

 $\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \notin y)$

(Poor Frege!)

 $\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \notin y)$

(Poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP

 $\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \notin y)$

(Poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP

HyperGrader[™] Problems ▼ HyperSlate My Submissions Leader Board

FregTHEN2

KnightKnave_SmullyanKKPro blem1.1

AthenCfromAthenBandBthen C

BiconditionalIntroByChaining

BogusBiconditional

CheatersNeverPropser

Contrapositive_NYS_2

Disj_Syll

GreenCheeseMoon2

HypSyll

LarryIsSomehowSmart

Modus_Tollens

RussellsLetter2Frege

ThxForThePCOracle

Explosion

OnlyMediumOrLargeLlamas

GreenCheeseMoon1

Disj_Elim

kok13_28

KingAce2

kok_13_31

RussellsLetter2Frege

The challenge here is to prove that from Russell's instantiation of Frege's doomed Axiom V a contradiction can be promptly derived. The letter has of course been examined in some detail by S Bringsjord (in the Mar 16 2020 lecture in the 2020 lecture lineup); it, along with an astoundingly soft-spoken reply from Frege, can be found here. Put meta-logically, your task in the present problem is to build a proof that confirms this:

 $\{\exists x orall y ((y \in x)
ightarrow (y
otin y))\} dash \zeta \wedge \neg \zeta.$

Make sure you understand that the given here is an instantiation of Frege's Axiom V; i.e. it's an instantiation of

 $\exists x orall y ((y \in x) o \phi(y)).$

(The notation $\phi(y)$, recall, is the standard way in mathematical logic to say that y is free in ϕ .) **Note**: Your finished proof is allowed to make use the PC-provability oracle (but *only* that oracle).

(Now a brief remark on matters covered by in class by Bringsjord when second-order logic = \mathscr{L}_2 arrives on the scene: Longer term, and certainly constituting evidence of Frege's capacity for ingenius, intricate deduction, it has recently been realized that while Frege himself relied on Axiom V to obtain what is known as **Hume's Principle** (= HP), this reliance is avoidable. That from just HP we can deduce all of Peano Arithmetic (**PA**) (!) is a result Frege can be credited with showing; the result is known today as Frege's Theorem (= FT). Following the link just given will reward the reader with an understanding of HP, and how how to obtain **PA** from it.)

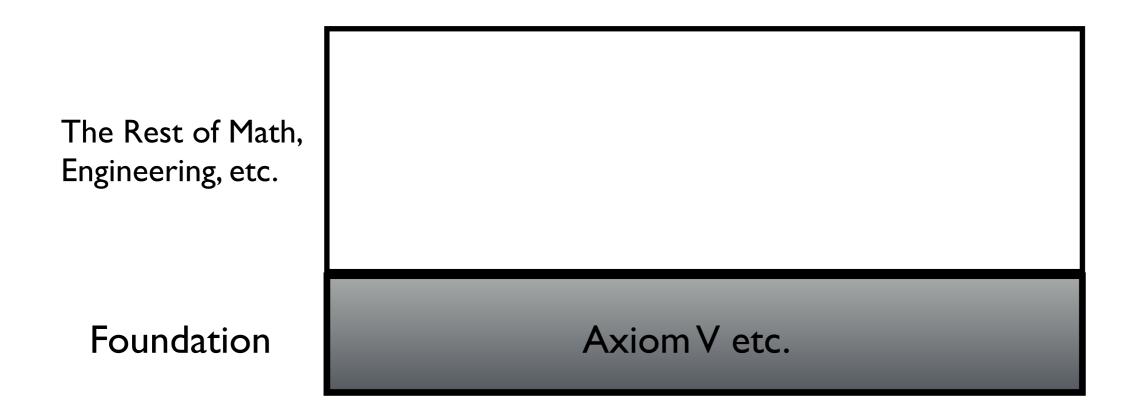
Solve

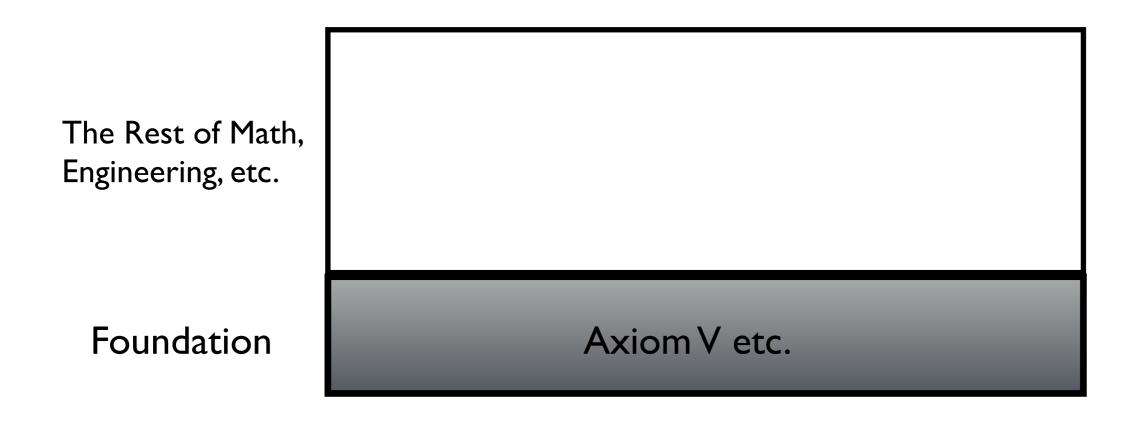
The Rest of Math,
Engineering, etc.FoundationAxiom V etc.

The Rest of Math, Engineering, etc.

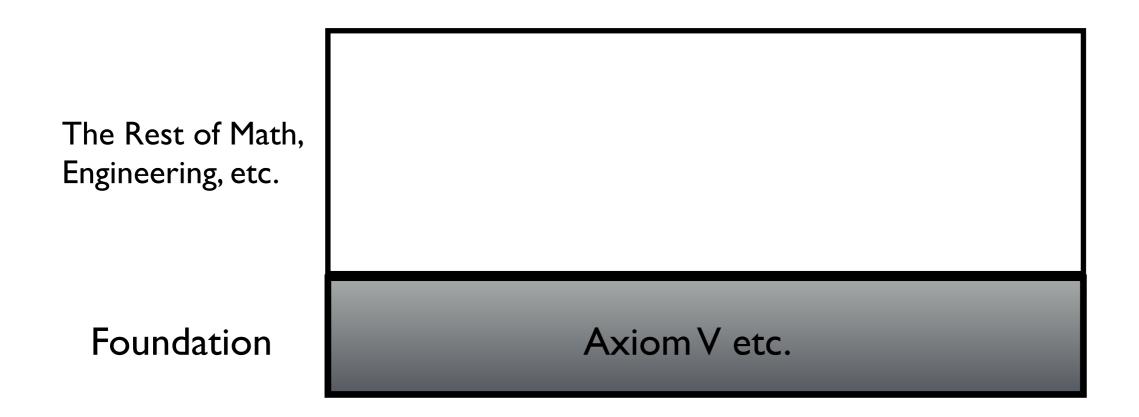
The Rest of Math, Engineering, etc.

The Rest of Math, Engineering, etc.



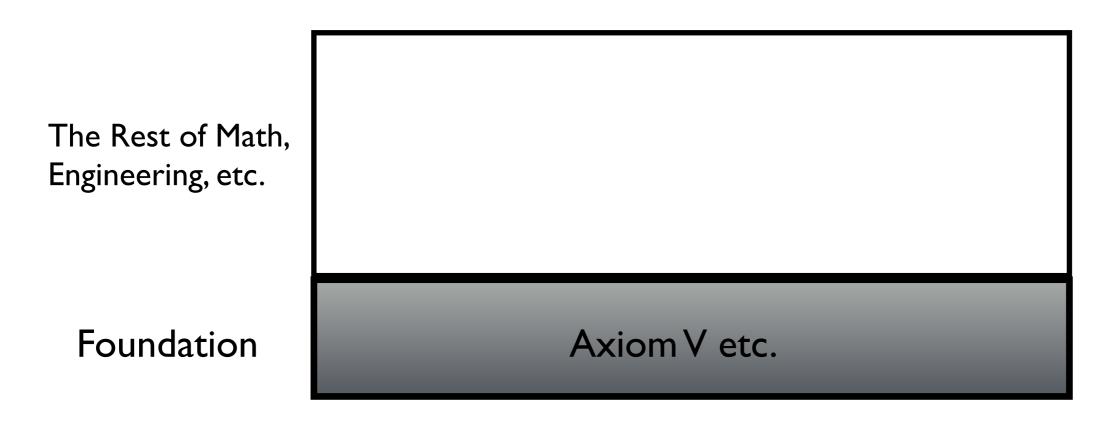


Axiom V $\exists x \forall y [y \in x \leftrightarrow \phi(y)]$



Axiom V $\exists x \forall y [y \in x \leftrightarrow \phi(y)]$

a formula of arbitrary size in which the variable y is free; this formula ascribes a property to y



Axiom V $\exists x \forall y [y \in x \leftrightarrow \phi(y)]$

a formula of arbitrary size in which the variable y is free; this formula ascribes a property to y

The Rest of Math,
Engineering, etc.FoundationAxiom V etc.

The Rest of Math, Engineering, etc.

The Rest of Math, Engineering, etc.

The Rest of Math, Engineering, etc.

It's not just Russell's Paradox that destroys naïve set theory:

It's not just Russell's Paradox that destroys naïve set theory:

Richard's Paradox ...

а

a b

- a b
- •
- •
- •

a b •

aa

a b • aa ab

- а
- b

- aa ab

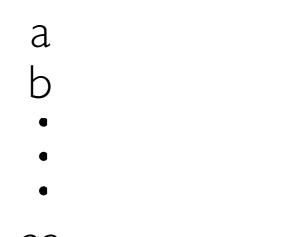
- а b

- aa ab

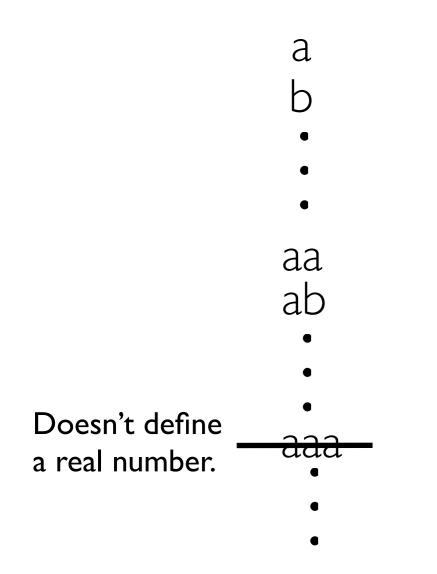
- aaa

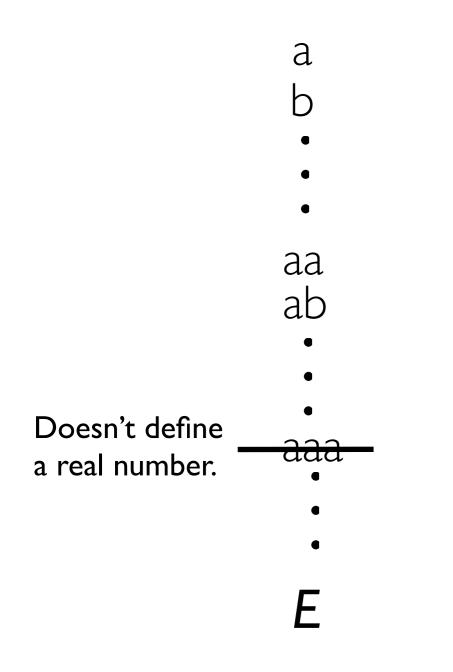
- а
- b
- •

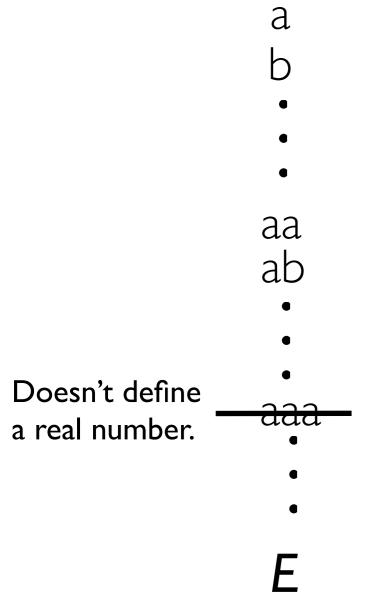
- aa ab
 - ●
- aaa



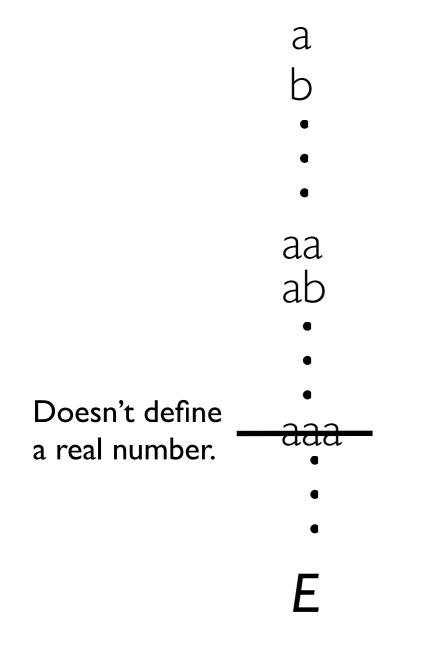
- aa ab
- •
- •
- -aaa-
- - - •



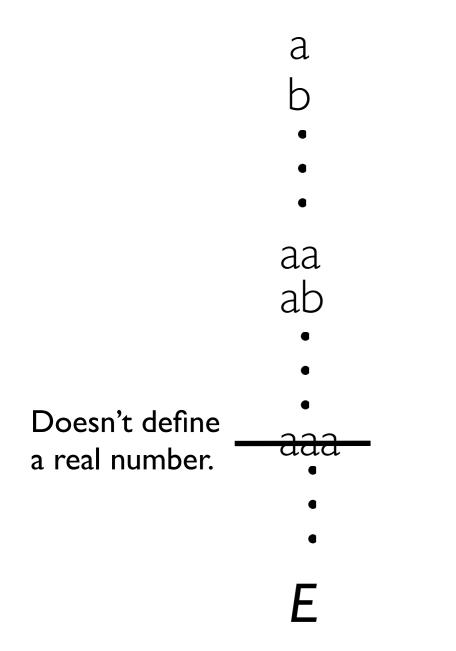




da • •



"The real number whose whole part is zero, and whose *n*-th decimal is p plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is p and p is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine."



"The real number whose whole part is zero, and whose *n*-th decimal is *p* plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is *p* and *p* is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine."

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! **QED**

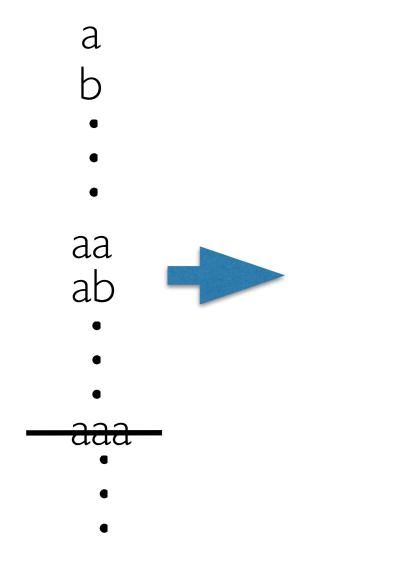
а

b

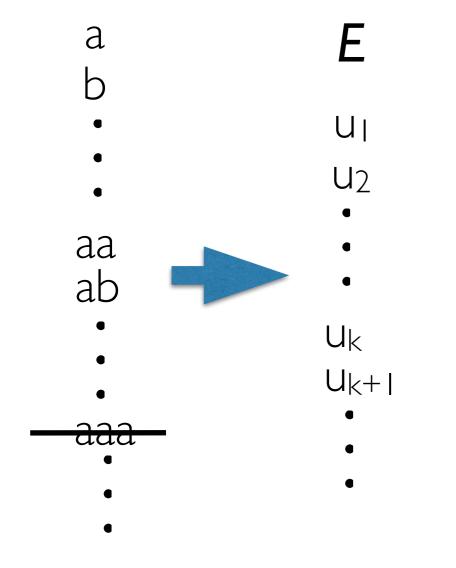
aa

ab

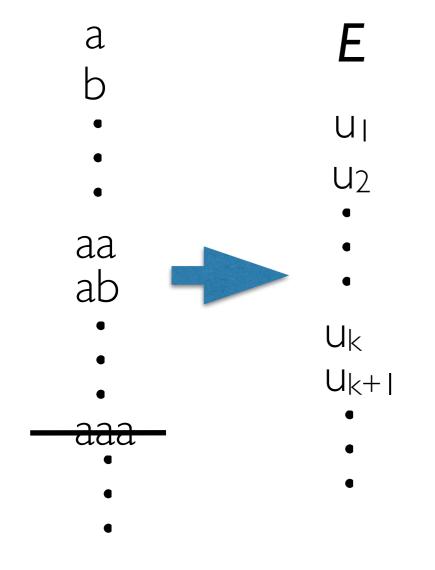
"The real number whose whole part is zero, and whose *n*-th decimal is p plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is p and p is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine."



"The real number whose whole part is zero, and whose *n*-th decimal is p plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is p and p is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine."

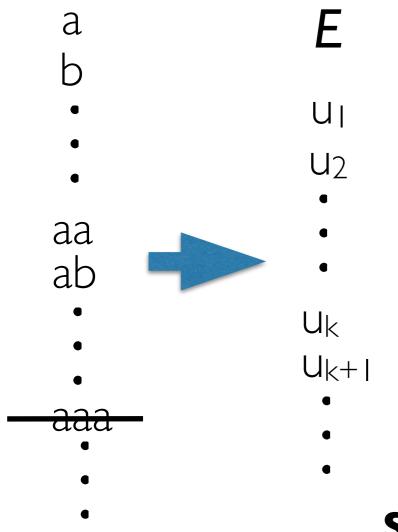


"The real number whose whole part is zero, and whose *n*-th decimal is p plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is p and p is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine."



"The real number whose whole part is zero, and whose *n*-th decimal is *p* plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is *p* and *p* is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine." **Suppose N is**

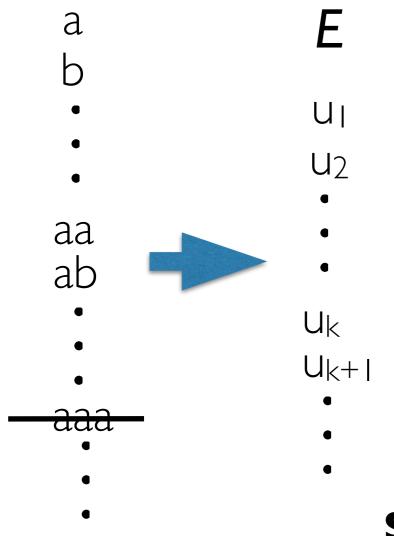
Um.



"The real number whose whole part is zero, and whose *n*-th decimal is *p* plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is *p* and *p* is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine." **Suppose N is**

u_m.

Suppose u_m is 0.xxxx...xxx...

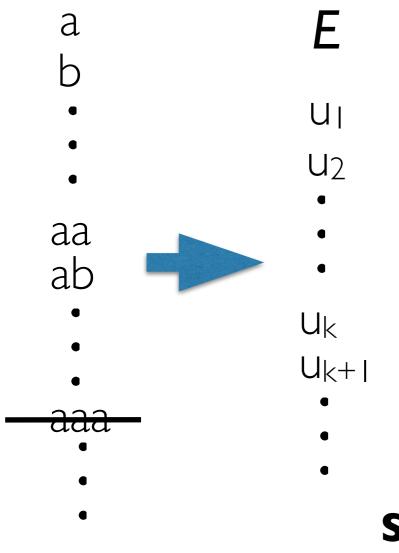


"The real number whose whole part is zero, and whose *n*-th decimal is *p* plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is *p* and *p* is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine." **Suppose N is**

u_m.

Suppose u_m is 0.xxxx...xxx...

mth



"The real number whose whole part is zero, and whose *n*-th decimal is *p* plus one if the *n*-th decimal of the real number defined by the *n*-th member of *E* is *p* and *p* is neither eight nor nine, and is simply one if this *n*-th decimal is eight or nine." **Suppose N is**

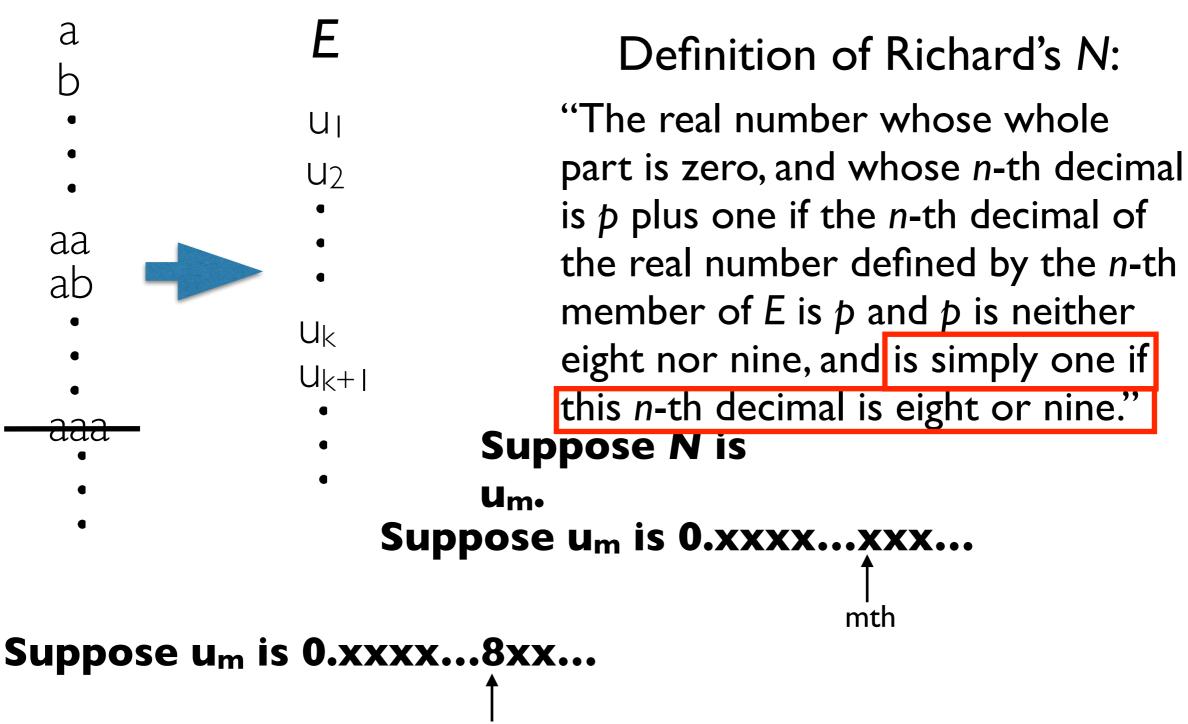
U_m.

Suppose u_m is 0.xxxx...xxx...

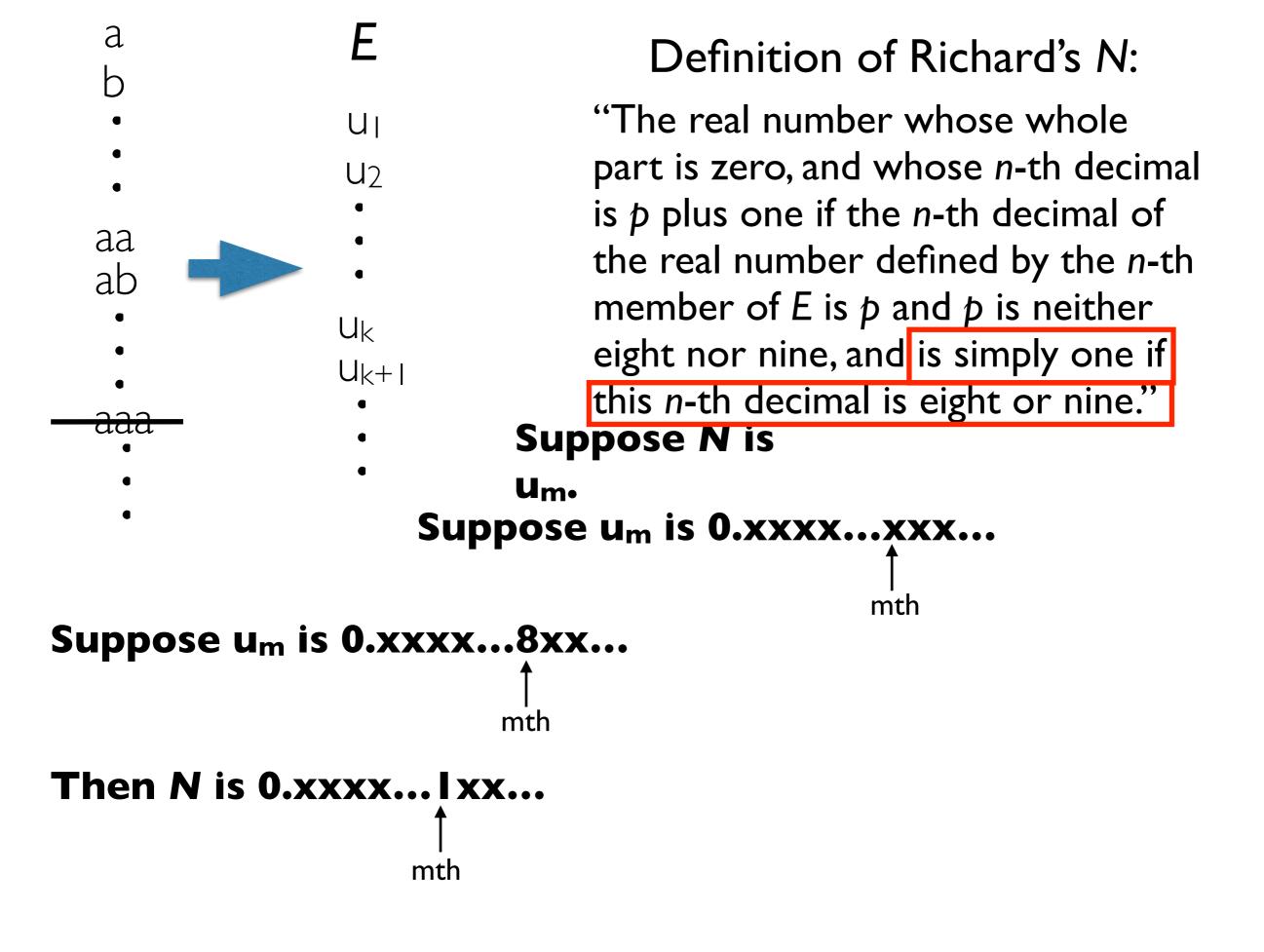
mth

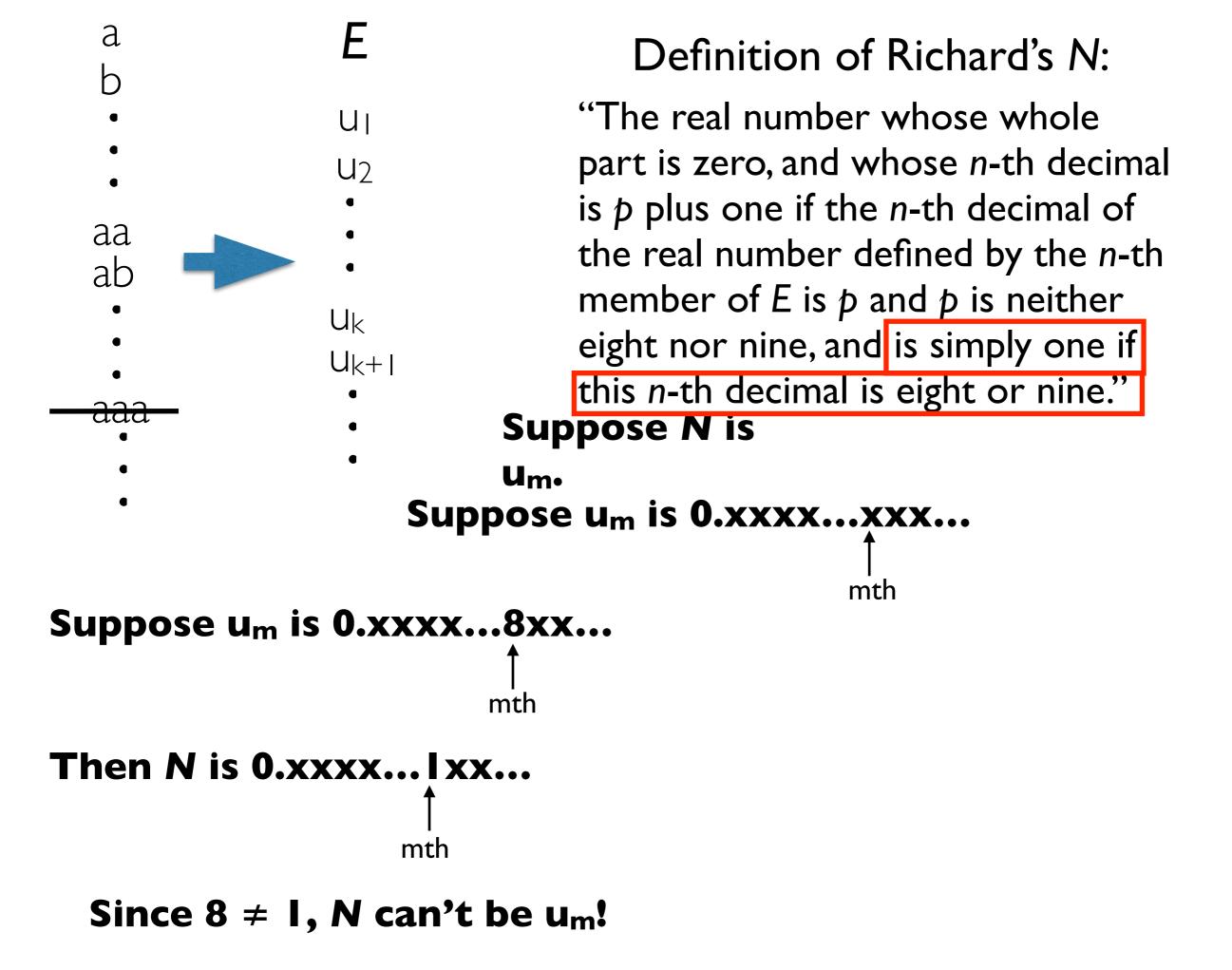
Suppose u_m is 0.xxxx...8xx...

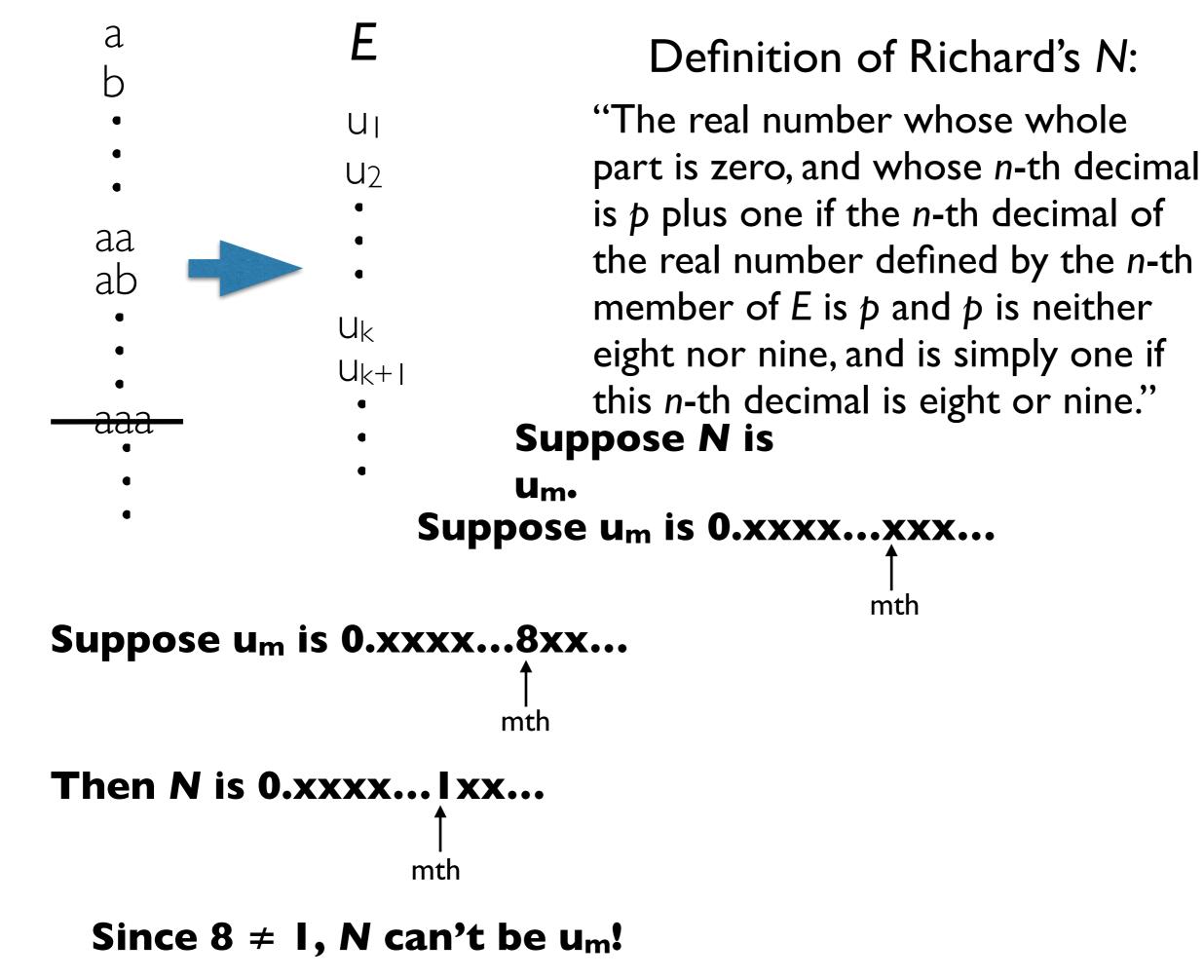
mth

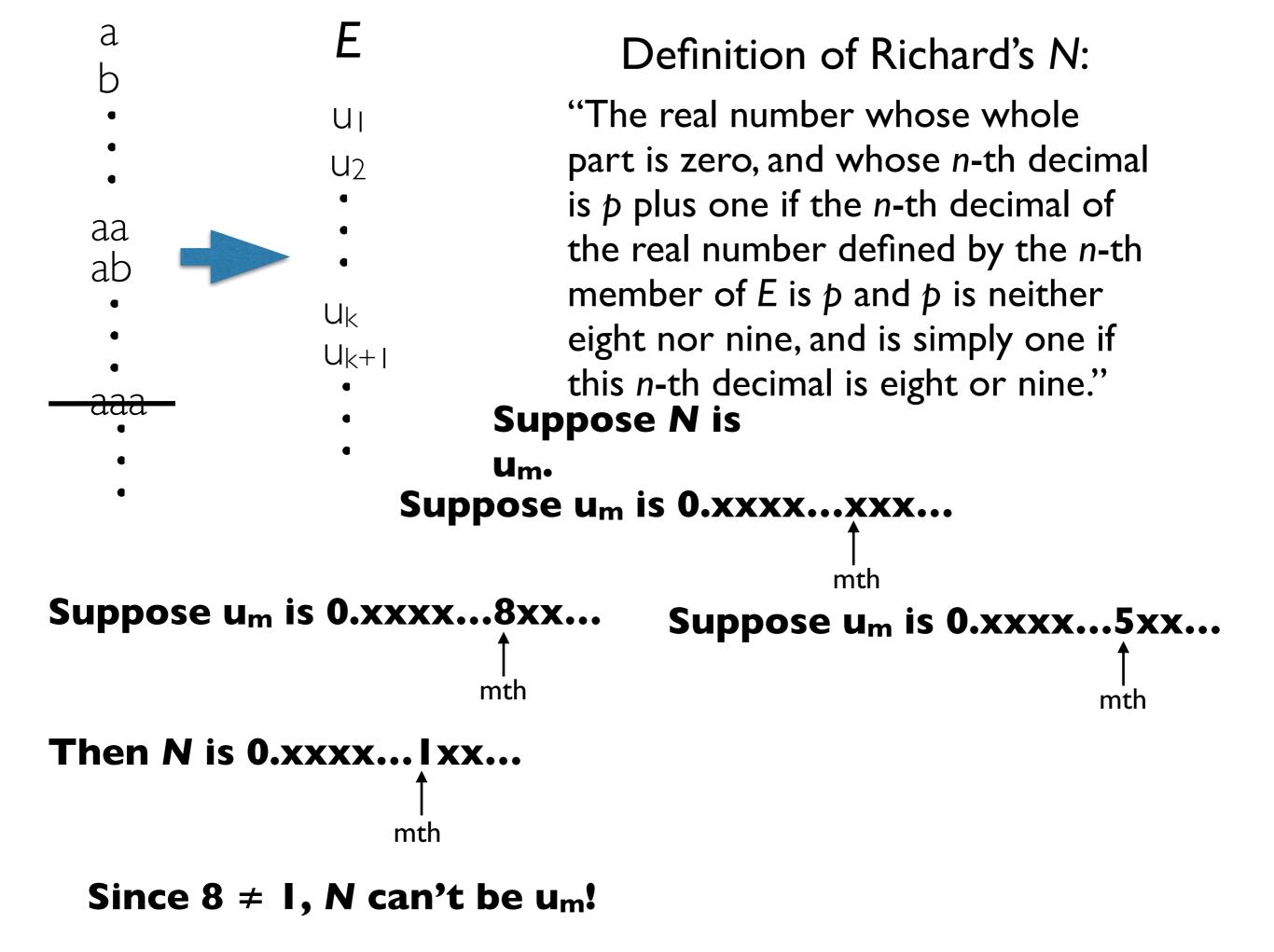


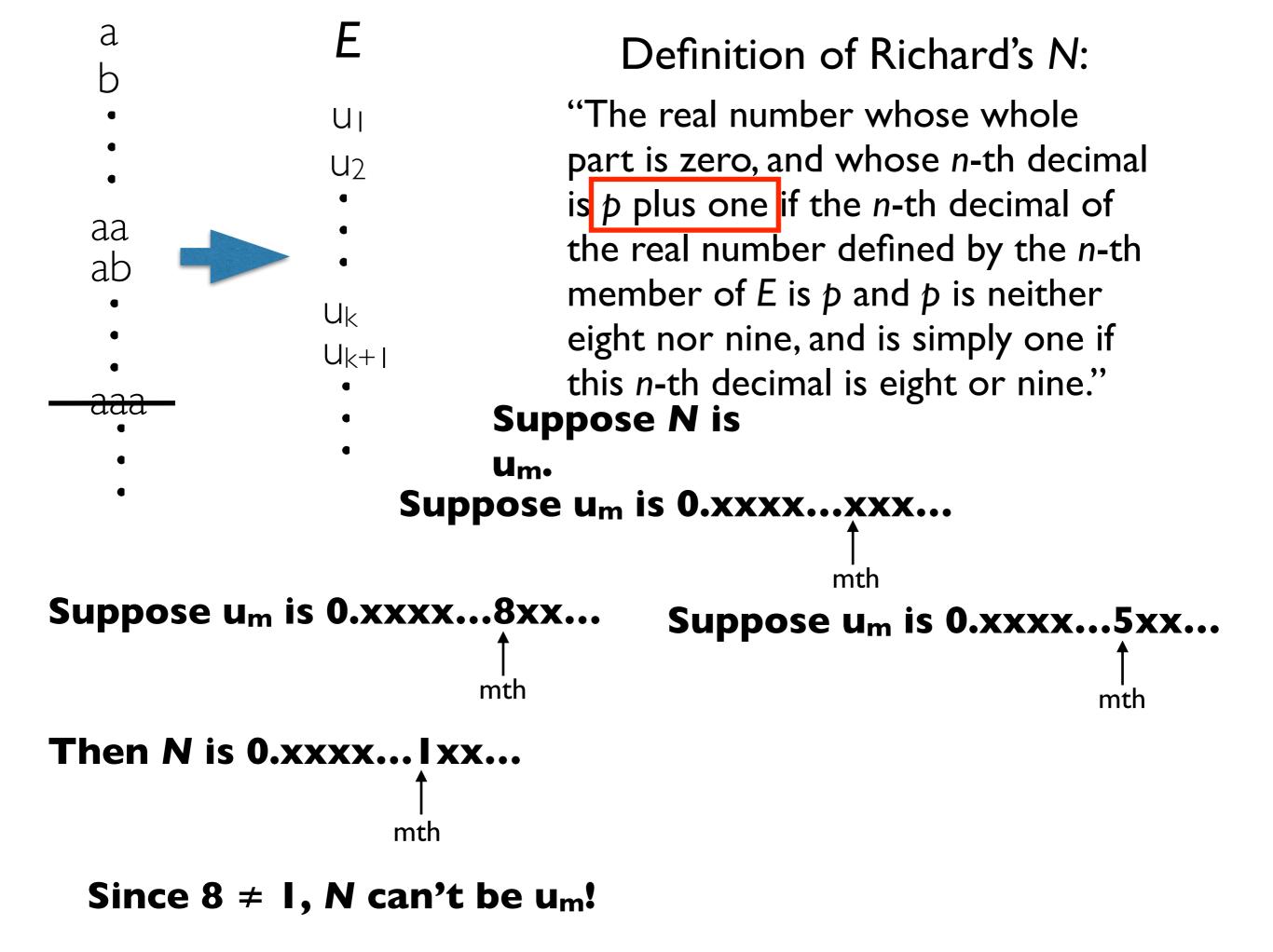
mth

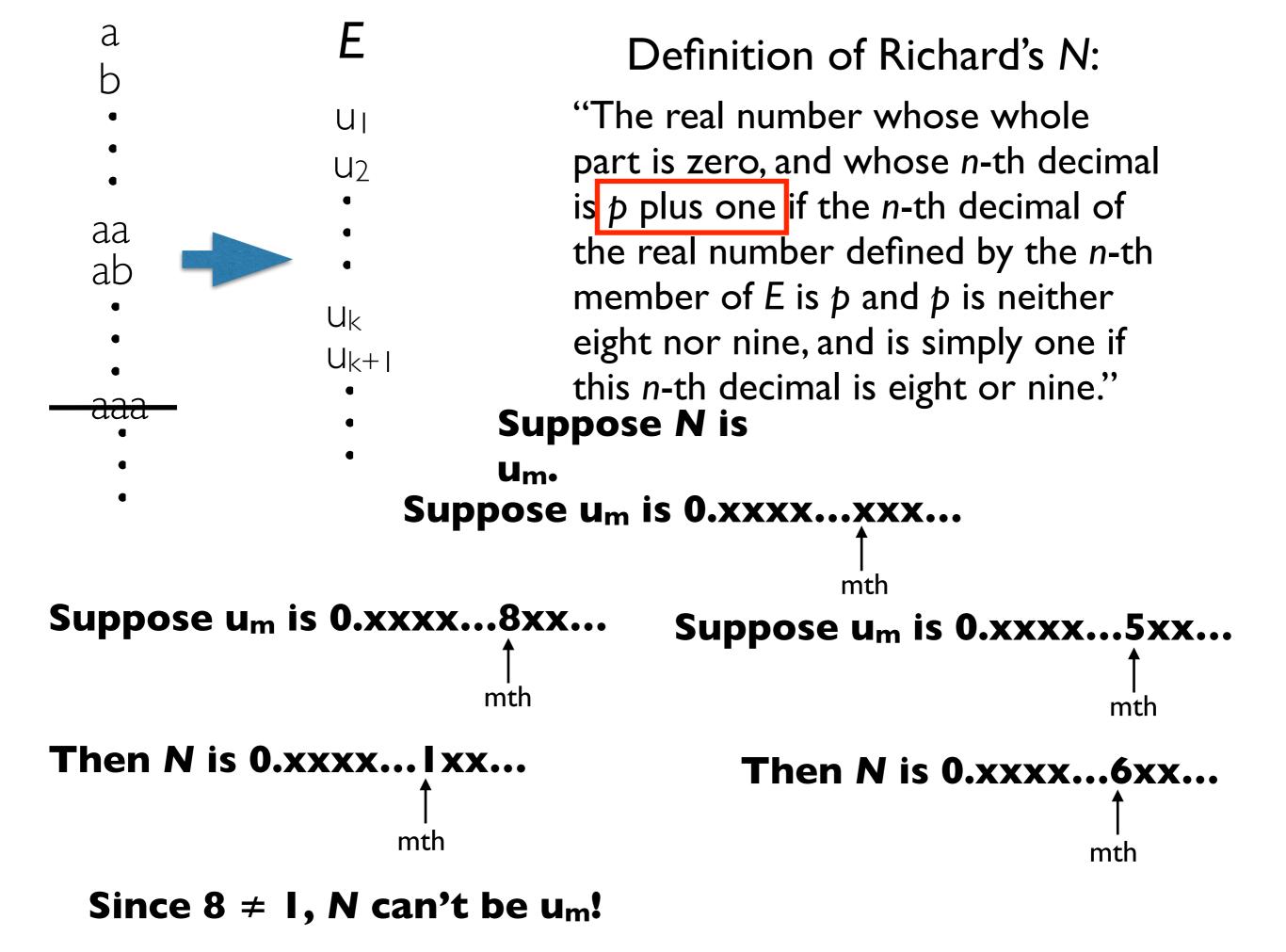


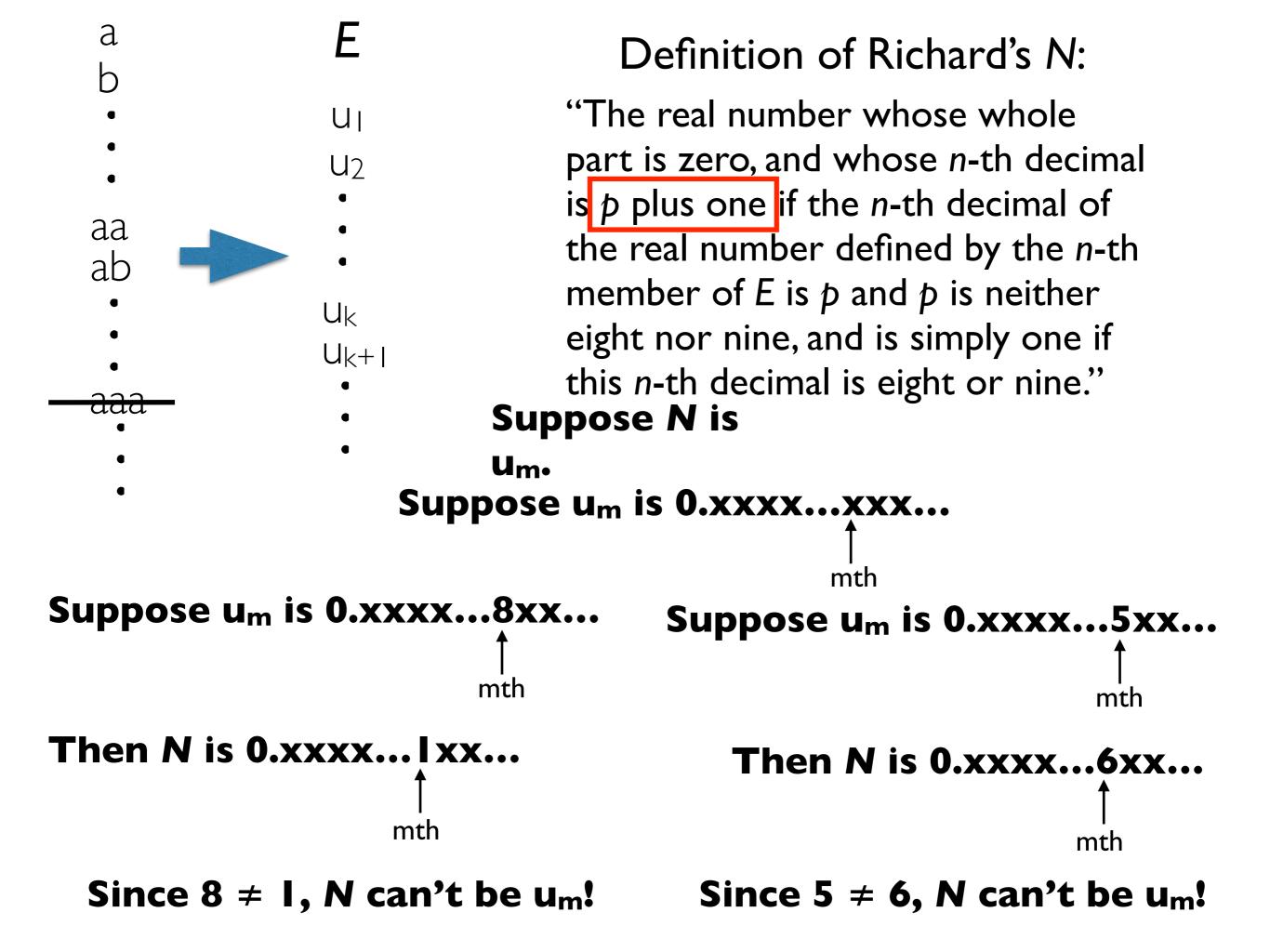












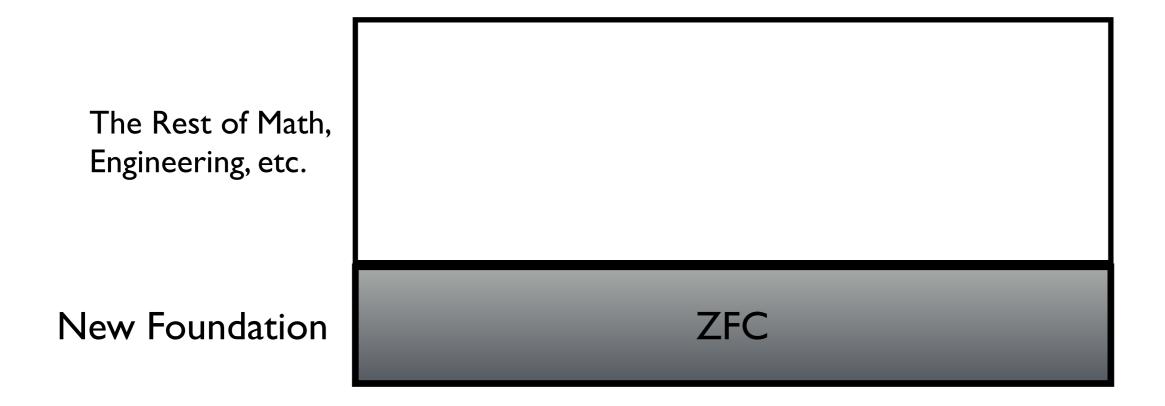
The Rest of Math, Engineering, etc.

New Foundation

The Rest of Math, Engineering, etc.

New Foundation

ZFC



The Rest of Math, Engineering, etc.			
	Arithmetic		
New Foundation		ZFC	

The Rest of Math, Engineering, etc.	Arithmetic
New Foundation	ZFC

So what are the axioms in ZFC?

The Rest of Math, Engineering, etc.	Arithmetic
New Foundation	ZFC

So what are the axioms in ZFC?

Axiom Schema of Separation (SEP)

Axiom Schema of Separation (SEP)

SEP

 $\forall x_1 \dots \forall x_k \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z, x_1, \dots, x_k))]$

where x and y are distinct, and are both distinct from z and the x_i ; and, as usual for us now, ϕ expresses a property using \in .

Axiom Schema of Separation (SEP)

SEP

 $\forall x_1 \dots \forall x_k \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z, x_1, \dots, x_k))]$

where x and y are distinct, and are both distinct from z and the x_i ; and, as usual for us now, ϕ expresses a property using \in .

"Given beforehand some set x and property \mathscr{P} captured by a formula ϕ that uses \in for its relation, the set y composed of $\{z \in x : \mathscr{P}(z)\}$ exists."

Axiom Schema of Separation (SEP)

SEP

 $\forall x_1 \dots \forall x_k \forall x \exists y \forall z [z \in y \leftrightarrow (z \in x \land \phi(z, x_1, \dots, x_k))]$

where x and y are distinct, and are both distinct from z and the x_i ; and, as usual for us now, ϕ expresses a property using \in .

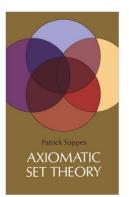
"Given beforehand some set x and property \mathscr{P} captured by a formula ϕ that uses \in for its relation, the set y composed of $\{z \in x : \mathscr{P}(z)\}$ exists."

> How does this neutralize Russell's letter to Frege?

Russell's Paradox ... to ZFC $\vdash \neg \exists x \forall y (y \in x \leftrightarrow y \notin y)$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP

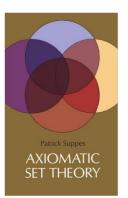


Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

 $\vdash \forall x (x \not\in \emptyset)$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP

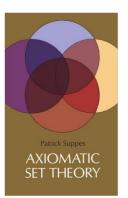


Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

 $\vdash \forall x (x \not\in \emptyset)$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP

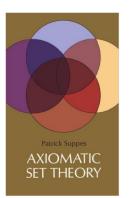


Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

 $\vdash \forall x (x \not\in \emptyset)$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP

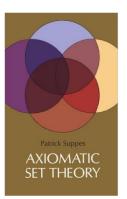


Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem I from Suppes:

 $\vdash \forall x (x \not\in \emptyset)$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



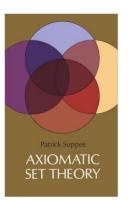
Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

$$\vdash \forall x (x \not\in \emptyset)$$

Try a second "Suppesian" theorem in ZFC:

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) 🗸 and try to show Theorem I from Suppes:

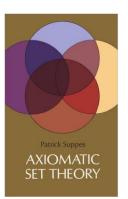
$$-\forall x(x \not\in \emptyset)$$

Try a second "Suppesian" theorem in ZFC:

 $\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

$$-\forall x(x \notin \emptyset)$$

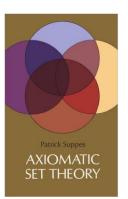
Try a second "Suppesian" theorem in ZFC:

 $\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$

Now let's add the Definition of Subset to ZFC:

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

$$-\forall x(x \not\in \emptyset)$$

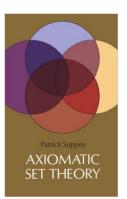
Try a second "Suppesian" theorem in ZFC:

$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

Now let's add the Definition of Subset to ZFC: $\forall x \forall y [x \subseteq y \leftrightarrow \forall z (z \in x \rightarrow z \in y)]$

(Russell's Theorem; poor Frege!)

http://plato.stanford.edu/entries/russell-paradox/#HOTP



Supplant Cantor's/Frege's Axiom V with the Axiom Schema of Separation (& put on our thinking caps ...) and try to show Theorem 1 from Suppes:

$$-\forall x(x \not\in \emptyset)$$

Try a second "Suppesian" theorem in ZFC:

$$\vdash \forall x [(\forall z (z \not\in x)) \to x = \emptyset]$$

Now let's add the Definition of Subset to ZFC: $\forall x \forall y [x \subseteq y \leftrightarrow \forall z (z \in x \rightarrow z \in y)]$

With this definition, can you prove (Theorem 3) that every set is a subset of itself?

Formal Natural-Number Arithmetic ...

PA (Peano Arithmetic)

 $\begin{array}{ll} \mathrm{A1} & \forall x (0 \neq s(x)) \\ \mathrm{A2} & \forall x \forall y (s(x) = s(y) \rightarrow x = y) \\ \mathrm{A3} & \forall x (x \neq 0 \rightarrow \exists y (x = s(y))) \\ \mathrm{A4} & \forall x (x + 0 = x) \\ \mathrm{A5} & \forall x \forall y (x + s(y) = s(x + y)) \\ \mathrm{A6} & \forall x (x \times 0 = 0) \\ \mathrm{A7} & \forall x \forall y (x \times s(y) = (x \times y) + x) \end{array}$

And, every sentence that is the universal closure of an instance of

$$([\phi(0) \land \forall x(\phi(x) \to \phi(s(x))] \to \forall x\phi(x)))$$

where $\phi(x)$ is open wff with variable x, and perhaps others, free.

PA (Peano Arithmetic)

 $\begin{array}{ll} \mathrm{A1} & \forall x (0 \neq s(x)) \\ \mathrm{A2} & \forall x \forall y (s(x) = s(y) \rightarrow x = y) \\ \mathrm{A3} & \forall x (x \neq 0 \rightarrow \exists y (x = s(y))) \\ \mathrm{A4} & \forall x (x + 0 = x) \\ \mathrm{A5} & \forall x \forall y (x + s(y) = s(x + y)) \\ \mathrm{A6} & \forall x (x \times 0 = 0) \\ \mathrm{A7} & \forall x \forall y (x \times s(y) = (x \times y) + x) \end{array}$

And, every sentence that is the universal closure of an instance of

$$([\phi(0) \land \forall x(\phi(x) \to \phi(s(x))] \to \forall x\phi(x)))$$

where $\phi(x)$ is open wff with variable x, and perhaps others, free.

We've already seen it in our coverage of ZFC.

We've already seen it in our coverage of ZFC.

$$\exists y[s(s(0)) \times y = s(s(s(s(0))))]$$

We've already seen it in our coverage of ZFC.

$$\exists y[s(s(0)) \times y = s(s(s(s(0))))]$$

This says what?

We've already seen it in our coverage of ZFC.

$$\exists y[s(s(0)) \times y = s(s(s(s(0))))]$$

This says what?

That 2 multiplied by some number yields 4.

We've already seen it in our coverage of ZFC.

$$\exists y[s(s(0)) \times y = s(s(s(s(0))))]$$

This says what?

That 2 multiplied by some number yields 4. But this is very specific: the successor of the successor of zero is specifically 2.

We've already seen it in our coverage of ZFC.

 $\exists y[s(s(0)) \times y = s(s(s(s(0))))]$

This says what?

That 2 multiplied by some number yields 4. But this is very specific: the successor of the successor of zero is specifically 2. Here then is the general case with an "open" wff:

We've already seen it in our coverage of ZFC.

 $\exists y[s(s(0)) \times y = s(s(s(s(0))))]$

This says what?

That 2 multiplied by some number yields 4. But this is very specific: the successor of the successor of zero is specifically 2. Here then is the general case with an "open" wff:

 $\exists y[s(s(0)) \times y = x]$

We've already seen it in our coverage of ZFC.

 $\exists y[s(s(0)) \times y = s(s(s(s(0))))]$

This says what?

That 2 multiplied by some number yields 4.But this is very specific: the successor of the successor of zero is specifically 2.Here then is the general case with an "open" wff:

 $\exists y[s(s(0)) \times y = x]$

This open wff $\phi(x) {\rm expresses}$ the arithmetic property 'even.'

Test 2 Orientation ...

Slutten