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Some Timeline Points

1906 Brünn, Austria-Hungary
1923 Vienna

Undergrad in seminar by Schlick
1929 Doctoral Dissertation:  Proof of Completeness Theorem

1933 Hitler comes to power.

1940 Back to USA, for good.

1978 Princeton NJ USA.

1930  Announces (First) Incompleteness Theorem

1936 Schlick murdered; Austria annexed 

“Well, uh, hmm, …”
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All of this is fishy; but 
Gödel transformed it into 
utterly precise, impactful, 
indisputable reasoning …



PA (Peano Arithmetic):

A1 ⇥x(0 �= s(x))
A2 ⇥x⇥y(s(x) = s(y)� x = y)
A3 ⇤x(x ⇥= 0 � ⌅y(x = s(y))
A4 �x(x + 0 = x)
A5 �x�y(x + s(y) = s(x + y))
A6 ⇥x(x� 0 = 0)
A7 ⇥x⇥y(x� s(y) = (x� y) + x)

And, every sentence that is the universal closure of an instance of

where �(x) is open w� with variable x, and perhaps others, free.
([�(0) ⇤ ⇥x(�(x) � �(s(x))] � ⇥x�(x))
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just refer to this word as “k”  Or in the notation I prefer:  .kgimcrack
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Gödel Numbering, the Easy Way

Just realize that every entry in a dictionary is named by a 
number n, and by the same basic lexicographic ordering, every 
computer program, formula, etc. is named by a number m in a 
lexicographic ordering going from 1, to 2, to …

Or, every syntactically valid computer program 
in Clojure that you will ever write can be 
uniquely denoted by some number m in the 
lexicographic ordering of all syntactically valid 
such programs.  So your program  can just be 
coded as a numeral  in a formal language that 
captures arithmetic (i.e., an arithmetic language).

π
mπ



Let  be a set of arithmetic sentences that is 

(i) consistent (i.e. no contradiction  can be 
deduced from );

(ii) s.t. an algorithm is available to decide whether or 
not a given string  is a member of ; and 

(iii) sufficiently expressive to capture all of the 
operations of a standard computing machine (e.g. a 
Turing machine, register machine, KU machine, 
etc.).

Then there is an “undecidable” arithmetic sentence  
from Gödel that can’t be proved from , nor can the 
negation of this sentence (i.e. ) be proved from !

Φ

ϕ ∧ ¬ϕ
Φ

u Φ

𝒢
Φ

¬𝒢 Φ

Gödel’s First Incompleteness Theorem
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Suppose  (=  contains PA) that is

(i) ;
(ii) Turing-decidable, and 
(iii) sufficiently expressive to capture all of the 

operations of a Turing machine (i.e. ).

Then there is an arithmetic sentence  s.t. 
 and .

Φ ⊃ PA Φ

Con Φ

Repr Φ

𝒢
Φ ⊬ 𝒢 Φ ⊬ ¬𝒢
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Gödel’s First Incompleteness Theorem



Suppose  (=  contains PA) that is

(i) ;
(ii) Membership in  is Turing-decidable, and 
(iii) Alll recursive = Turing-decidable arithmetic 

functions and relations is representable in  
(i.e. ).  In other words, we can 
logicize any meta-logical statement that says 
some Turing-decidable relation holds of 
some natural numbers.

Then there is an arithmetic sentence  s.t. 
 and .

Φ ⊃ PA Φ

Con Φ
Φ

Φ
Repr Φ

𝒢
Φ ⊬ 𝒢 Φ ⊬ ¬𝒢

Gödel’s First Incompleteness Theorem



To prove G1, we shall 
allow ourselves …



The Fixed Point Theorem (FPT)

Assume that  is a set of arithmetic sentences such 
that .  Then for every arithmetic formula  
with one free variable , there is an arithmetic 
sentence  s.t.

.

We can intuitively understand  to be saying:  
“I have the property ascribed to me by the formula .”

Φ
Repr Φ ψ(x)

x
ϕ

Φ ⊢ ϕ ↔ ψ( ̂nϕ)

ϕ
ψ



“I thought there was no free lunch!”

[W]e “would hope that such a deep theorem would have an insightful 
proof.  No such luck.  I am going to write down a sentence … and verify 
that it works.  What I won’t do is give you a satisfactory explanation for 
why I write down the particular formula that I do.  I write down the 
formula because Gödel wrote down the formula, and Gödel wrote down 
the formula because, when he played the logic game he was able to see 
seven or eight moves ahead, whereas you and I are only able to see one 
or two moves ahead.  I don’t know anyone who thinks he has a fully 
satisfying understanding of why the Self-referential Lemma [= FPT] 
works.  It has a rabbit-out-of-a-hat quality for everyone.”

—V. McGee, 2002; as quoted in (Salehi 2020)



The Fixed Point Theorem (FPT)

Assume that  is a set of arithmetic sentences such 
that .  There for every arithmetic formula  
with one free variable , there is an arithmetic 
sentence  s.t.

.

We can intuitively understand  to be saying:  
“I have the property ascribed to me by the formula .”

Φ
Repr Φ ψ(x)

x
ϕ

Φ ⊢ ϕ ↔ ψ( ̂nϕ)

ϕ
ψ



Ok; so let’s do it …





Proof:  Let  be a set of arithmetic sentences, and suppose (for 
conditional intro) the antecedent of G1 holds, i.e. (i)–(iii) hold.  We must 
show that neither , nor the negation of this (Liar-Paradox-inspired) 
arithmetic sentence, can be proved from .  We know, respectively, that 
for any theorem  of , and from an instantiation of FPT, that:
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ϕ Φ



(Repr ) = (1)   if and only if .* Thm(nϕ) Φ ⊢ ϕ
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arithmetic sentence, can be proved from .  We know, respectively, that 
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Φ

𝒢
Φ

ϕ Φ
“I’m unprovable!”



Here,  is of course a variable in (1) for any formula; and is a 
logicization of Thm.  Now suppose .  By right-to-left on (1) we 
deduce .  We can logicicize this as .  Then by modus 
tollens , by right-to-left on (2).  Contradiction!
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conditional intro) the antecedent of G1 holds, i.e. (i)–(iii) hold.  We must 
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Φ

𝒢
Φ

ϕ Φ

Suppose on the other hand .  And, suppose for reductio that
.  We can logicize this as , and then we can use this 

right-to-left on (2) to deduce .  But this entails  = Con .  
Yet our original assumptions (it’s (i), specifically) include , so:  
contradiction.  Therefore (by negation elim) we have .  But 
from this, left-to-right on (1), we have .  But then we have that 

 is both provable and not provable from , which is a contradiction 
with (i) = !   QED

Φ ⊢ ¬𝒢
¬Thm(n𝒢) ¬𝒯( ̂n𝒢)

Φ ⊢ 𝒢 Inc Φ Φ
Con Φ

Thm(n𝒢)
Φ ⊢ 𝒢

𝒢 Φ
Con Φ

“I’m unprovable!”



“Silly abstract nonsense!  There 
aren’t any concrete examples of !”𝒢
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Astrologic:  
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Ah, but e.g.:  Goodstein’s Theorem!



Ah, but e.g.:  Goodstein’s Theorem!

The Goodstein Sequence goes to zero!



Pure base n representation of 
a number r

• Represent r as only sum of powers of n in 
which the exponents are also powers of n, etc.



Grow Function



Example of Grow



Goodstein Sequence
• For any natural number m



Sample Values
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(96th term)

...



Sample Values
m

2 2 2 1 0

3 3 3 3 2 1 0

4 4 26 41 60 83 109 139 ... 11327 
(96th term)

...

5 15 ~1013 ~10155 ~102185 ~1036306 10695975 1015151337 ...





This sequence actually goes to zero!
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Could an AI Ever Match Gödel’s G1 & G2?



Gödel’s Great Theorems (OUP)
by Selmer Bringsjord

• Introduction (“The Wager”)

• Brief Preliminaries (e.g. the 
propositional calculus & FOL)

• The Completeness Theorem

• The First Incompleteness Theorem 

• The Second Incompleteness 
Theorem

• The Speedup Theorem

• The Continuum-Hypothesis 
Theorem

• The Time-Travel Theorem

• Gödel’s “God Theorem”

• Could a Machine Match Gödel’s 
Genius?
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Med nok penger,  kan 
logikk løse alle problemer.


