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“I’m unprovable.”π̄ =





All of this is fishy; but Gödel, 
as we’ve seen, transformed it 
(by e.g. use of his encryption 
scheme) into utterly precise, 
impactful, indisputable 
reasoning …



PA (Peano Arithmetic):

A1 ⇥x(0 �= s(x))
A2 ⇥x⇥y(s(x) = s(y)� x = y)
A3 ⇤x(x ⇥= 0 � ⌅y(x = s(y))
A4 �x(x + 0 = x)
A5 �x�y(x + s(y) = s(x + y))
A6 ⇥x(x� 0 = 0)
A7 ⇥x⇥y(x� s(y) = (x� y) + x)

And, every sentence that is the universal closure of an instance of

where �(x) is open w� with variable x, and perhaps others, free.
([�(0) ⇤ ⇥x(�(x) � �(s(x))] � ⇥x�(x))
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G2 as Slogan …

“If we are restricted to certain kinds of 
formal reasoning, and feel we must have all of 
PA (math, engineering, etc.), we can’t 
ascertain whether mathematics is consistent.”



Gödel’s Second Incompleteness Theorem



Suppose  that is

(i) ;
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To prove G2, we shall once 
again allow ourselves …



The Fixed Point Theorem (FPT)

Assume that  is a set of arithmetic sentences such 
that .  There for every arithmetic formula  
with one free variable , there is an arithmetic 
sentence  s.t.

.

We can intuitively understand  to be saying:  
“I have the property ascribed to me by the formula .”

Φ
Repr Φ ψ(x)

x
ϕ

Φ ⊢ ϕ ↔ ψ( ̂nϕ)

ϕ
ψ



FPT in HyperSlate®!



Ok; so let’s do it … and let’s 
see if you can see why Gödel 
declared G2 to be a direct 

“corollary” of G1, and didn’t 
bother to prove it in his 

original paper …



( )  * Φ ⊢ 𝒢 ↔ ¬𝒫Φ( ̂n𝒢′￼) .

Proof:  Suppose that the antecedent (i)–(iii) of G2 holds.   Suppose for 
reductio that

We need three ingredients, and we shall be done.  First, from FPT we can 
again directly obtain:

Φ ⊢ consisΦ .

(7.9)  If Con , then .Φ Φ ⊬ 𝒢

Thirdly, we can logicize the meta-logical proposition that  is consistent 
as an object-level conditional which can itself be proved formally from :

Φ
Φ

Contradiction!  (Can you find it?)  QED

Next, we can prove (how? … from one half of G1!) that:

(**)  .Φ ⊢ consisΦ → ¬𝒫Φ( ̂n𝒢)





Med nok penger,  kan 
logikk løse alle problemer.


