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Re HyperGrader® Content

® April 19 approaching ...
® Dreadsbury is published!

® This is Bonus problem. Attempt only if
you're a hotshot. No hints have ever
been/will be provided.



Deductive Logic vs
Inductive Logic ...



Simple Specimens to Convey the Distinction

the hallmark of deductive logic is proof, the hallmark of inductive logic is the concept
of an argument. An exceptionally strong kind of argument is a proof, but plenty of
arguments fall short of being proofs — and yet still have considerable force. For
instance, consider the following argument a,:

(1) Tweety is bird.
(2) Most birds can fly.
(3) Tweety can fly.

For start contrast, consider as well this argument (a>):

(1) 3 isapositive integer.
(2’)  All positive integers are greater than 0.
(3) 3isgreater than 0.

The second of these arguments qualifies as an outright proof. That is, using the
notation much employed before the present chapter:

{(1),2+@3)

But in stark contrast, argument a, is not a proof that Tweety can fly. The reason is
obvious: (3) isn't deduced from the combination of (1) and (2); that is,

{(1),(2}#(3)
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Same point can be made via variants using
ikelihood values, or probability values.




And for something much more robust and
interesting/infamous ...

The Monty Hall Problem teaches us that
we need more than formal deductive logic!



Those who fail are behaving irrationally:

Friedman, D. (1998) “Monty Hall’s Three Doors: Construction and

Deconstruction of a Choice Anomaly” American Economic Review 88(4): 933—
946.

* http://static.luiss.it/hey/ambiguity/papers/Friedman_ 1998.pdf



http://static.luiss.it/hey/ambiguity/papers/Friedman_1998.pdf

Those who fail are behaving irrationally:

Friedman, D. (1998) “Monty Hall’s Three Doors: Construction and

Deconstruction of a Choice Anomaly” American Economic Review 88(4): 933—
946.

* http://static.luiss.it/hey/ambiguity/papers/Friedman_ 1998.pdf

Sometimes people make decisions that seem inconsistent with rational choice
theory. We have a "choice anomaly" when such decisions are systematic and well
documented. From a few isolated examples such as the Maurice Allais (1953)
paradox and the probability matching puzzle of William K. Estes (1954), the set of
anomalies expanded dramatically in the last two decades, especially following the
work of Daniel Kahneman and Amos Tversky (e.g., 1979). By now the empirical
iterature offers dozens of interrelated anomalies documented in hundreds of
articles and surveys (e.g.,, Colin . Camerer; 1995).
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Anomalies?? You mean irrational decisions?
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Don’t Trust the Popular Media!

Monty Hall, Erdos, and Our Limited Minds

THE MONTY HALL problem is a well-known mathematical
brainteaser. But I find it intriguing not for how to solve it, but for how
widespread having trouble with it is.

Based off of a television game show, the Monty Hall problem begins

with a contestant finding herself in front of three doors. She is told
that behind one of them is a car, while behind the other two there

H are goats. Since it is presumed that contestants want to win cars not
goats, if nothing else for their resale value, there is a one-third
chance of choosing the car and winning.

But now here’s the twist. After the contestant chooses a door, the

->=

game show host has another door opened and the contestant is
shown a goat. Should she stick with the door she has originally
chosen, or switch to the remaining unopened door?

There are many ways to examine this, but it turns out that it is
always better to switch. Many people assume that the probability
remains the same—it’s fifty-fifty so switching doesn’t matter—but
they are wrong. There is a higher probability of the car being behind
the door when you switch (here is a detailed discussion but I like to

think about it based on an extreme version, one with 100 doors. One
has a car and the others all have goats. You choose a door. The host
opens 98 other doors, showing all goats. Should you switch? Of
course! The host has done the work of almost certainly finding of the
car for you.)

Anyway, I'm not concerned with the particulars of the problem but
rather with how people respond to it. Namely, many listeners, even
highly-trained mathematicians, are initially confused by the

probabilities. In fact, until I learned of the extreme version with 100

doors, I didn't really understand why switching is better either.
https://www.wired.com/2014/1 | /monty-hall-erdos-limited-minds/
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Monty Hall, Erdos, and Our Limited Minds

In fact, Paul Erdés, one of the most prolific and foremost

mathematicians involved in probability, when initially told of the

Monty Hall problem also fell victim to not understanding why

opening a door should make any difference. Even when given the
mathematical explanation multiple times, he wasn’t really

convinced. It took several days before he finally understood the ds
correct solution.

This problem is one of those situations—albeit rare—where someone

can be shown an entire chain of logic, surveying the whole problem
and its solution, and yet still have it bump up against their intuition.

Of course, there is nothing inherently useful about our intuitions.

Forged by evolution in situations completely different millions of
M O‘ years ago, our brain’s cognitive abilities are very often irrational, and
L' when dealing with highly sophisticated tasks, we must overcome our

I m intuition in order to understand them properly.

But seldom is this seen so clearly as in the Monty Hall problem. From
Wikipedia:

When first presented with the Monty Hall problem an overwhelming
majority of people assume that each door has an equal probability
and conclude that switching does not matter (Mueser and Granberg,
1999). Out of 228 subjects in one study, only 13% chose to switch
(Granberg and Brown, 1995:713). In her book The Power of Logical
Thinking, vos Savant (1996, p. 15) quotes cognitive psychologist
Massimo Piattelli-Palmarini as saying "... no other statistical puzzle
comes so close to fooling all the people all the time" and "that even
Nobel physicists systematically give the wrong answer, and that they
insist on it, and they are ready to berate in print those who propose
the right answer". Pigeons repeatedly exposed to the problem show
that they rapidly learn always to switch, unlike humans (Herbranson
and Schroeder, 2010)

Stressing that last line again, that pigeons "rapidly learn always to
switch, unlike humans,” shows how unstable the pedestal is upon
which humanity places itself. Our cognitive powers are great, but we

certainly are far from perfect.
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MHP Defined

Jones has come to a game show, and finds himself thereon selected to play a game on national TV with the show's
suave host, Full Monty. Jones is told correctly by Full that hidden behind one of three closed, opaque doors facing
the two of them is $1,000,000, while behind each of the other two is a feculent, obstreperous llama whose value on
the open market is charitably pegged at $1. Full reminds Jones that this is a game, and a fair one, and that if Jones
ends up selecting the door with $1M behind it, all that money will indeed be his. (Jones' net worth has nearly been
exhausted by his expenditures in traveling to the show.) Full also reminds Jones that he (= Full) knows what's
behind each door, fixed in place until the game ends.

Full asks Jones to select which door he wants the contents of. Jones says, "Door |." Full then says: "Hm. Okay.
Part of this game is my revealing at this point what's behind one of the doors you didn't choose. So ...let me show
you what's behind Door 3." Door 3 opens to reveal a very unsavory llama. Full now to Jones: "Do you want to
switch to Door 2, or stay with Door |1? You'll get what's behind the door of your choice, and our game will end."
Full looks briefly into the camera, directly.

(P1.1) What should Jones do if he's rational?

(P1.2) Prove that your answer is correct. (Diagrammatic proofs are allowed.)

(P1.3) A quantitative hedge fund manager with a PhD in finance from Harvard zipped this email off to Full before
Jones made his decision re. switching or not: "Switching would be a royal waste of time (and time is money!). Jones
hasn't a doggone clue what's behind Door | or Door 2, and it's obviously a 50/50 chance to win whether he stands

firm or switches. So the chap shouldn't switch!" Is the fund manager right? Prove that your diagnosis is correct.

(P1.4) Can these answers and proofs be exclusively Bayesian in nature?



Any questions about how the game is played!?



The Switching Policy Rational!

Proof: Our overarching technique will be proof by cases.

We denote the possible cases for initial distribution using a simple notation, according to which for
example ‘LLM’ means that, there is a lama behind Door I, a llama behind Door 2, and the million dollars
behind Door 3. With this notation in hand, our three starting cases are: Case |: MLL; Case 2: LML; Case
3: LLM. There are only three top-level cases for distribution. The odds of picking at the start the million-
dollar door is 1/3, obviously — for each case. Hence we know that the odds of a HOLD policy winning is
1/3.

Now we proceed in a proof by sub-cases under the three cases above, to show that the overall odds of a
SWITCH policy is greater than /3. Each sub-case is simply based on what the initial choice by Jones is,
under one of the three main cases. Here we go:

Suppose Case 3, LLM, holds, and that [this (Case 3.1) is the first of three sub-cases under Case 3] Jones
picks Door |. Then FM must reveal Door 2 to reveal a llama. Switching to Door 3 wins, guaranteed. In
sub-case 3.2 suppose that |’s choice Door 2. Then FM will reveal Door |. Again, switching to Door 3 wins,
guaranteed. In the final sub-case, ] initially selects Door 3 under Case 3; this is sub-case 3.3. Here, FM
shows either Door | or Door 2 (as itself a random choice). This time switching loses, guaranteed. Hence,
in two of the sub-cases out of three (2/3), winning is guaranteed (prob of |). An exactly parallel result can
be deduced for Case 2 and Case |;i.e., in each of these two, in two of the three (2/3) sub-cases winning is
|. Hence the odds of winning by following the switching policy is 2/3, which is greater than /3. Hence it’s
rational to be a switcher. QED



What about 4 doors!?



Deductive vs Inductive Paradoxes;
Deductive Reasoning vs Inductive Reasoning



Paradoxes are engines of
progress in formal logic &
fields based upon formal logic.

E.g., Russell’s Paradox — as we’ve seen.



Types of Paradoxes

® Deductive Paradoxes. The reasoning in question is
exclusively deductive.

® Russell’s Paradox
® The Liar Paradox
® Richard’s Paradox

® [nductive Paradoxes Some of the reasoning in
question uses non-deductive reasoning (e.g.,
probabilistic reasoning, abductive reasoning,
analogical reasoning, etc.).
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Portal to Competing Approaches to
Inductive Logic:
The Paradox of Grue ...
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The Grue Paradox Constructed

Green(o;, 1))

The Paradox: First, we define the property Grue:
Vx Vt [Grue(x) iff (t < t* = Green(x,t) A (t > t* = Blue(x,1)]

The Kk atomic formulae, together, support the general mineralogical law affirmed by our
mineralogist, who we assume to be a rational empirical scientist. But this scientist must
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Background Reading ...



The Original Publication Introducing The Grue Paradox

Goodman, N. (1955) Fact, Fiction, and Forecast (Cambridge, MA: Harvard University Press).
4th edition 1983, also HUPR



From “Nelson Goodman” in SEP
(https://plato.stanford.edu/entries/goodman)

Here comes the riddle. Suppose that your research is in gemology. Your special interest lies in the color
properties of certain gemstones, in particular, emeralds. All emeralds you have examined before a
certain time # were green (your notebook is full of evidence statements of the form “Emerald x found
at place y date z(z < f) is green”). It seems that, at 7, this supports the hypothesis that all emeralds are
green (L3).

Now Goodman introduces the predicate “grue”. This predicate applies to all things examined before
some future time ¢ just in case they are green but to other things (observed at or after 7) just in case
they are blue:

(DEF1) X is grue =4 X is examined before # and green v X is not so examined and blue

Until # it is obviously the case that for each statement in your notebook, there is a parallel statement
asserting that the emerald X found at place y date z(z < 1) is grue. Each of these statements is
analytically equivalent with the corresponding one in your notebook. All these grue-evidence
statements taken together confirm the hypothesis that all emeralds are grue (L4), and they confirm this
hypothesis to the exact same degree as the green-evidence statements confirmed the hypothesis that all
emeralds are green. But if that is the case, then the following two predictions are also confirmed to the
same degree:

(P1) The next emerald first examined after # will be green.
(P2) The next emerald first examined after # will be grue.

However, to be a grue emerald examined after 7 is not to be a green emerald. An emerald first
examined after 7 is grue iff it is blue. We have two mutually incompatible predictions, both confirmed
to the same degree by the past evidence. We could obviously define infinitely many grue-like
predicates that would all lead to new, similarly incompatible predictions.

The immediate lesson is that we cannot use all kinds of weird predicates to formulate hypotheses or to
classify our evidence. Some predicates (which are the ones like “green”) can be used for this; other
predicates (the ones like “grue”) must be excluded, if induction is supposed to make any sense. This
already is an interesting result. For valid inductive inferences the choice of predicates matters.

It is not just that we lack justification for accepting a general hypothesis as true only on the basis of
positive instances and lack of counterinstances (which was the old problem), or to define what rule we
are using when accepting a general hypothesis as true on these grounds (which was the problem after
Hume). The problem is to explain why some general statements (such as L3) are confirmed by their
instances, whereas others (such as L4) are not. Again, this is a matter of the lawlikeness of L3 in
contrast to L4, but how are we supposed to tell the lawlike regularities from the illegitimate
generalizations?



https://plato.stanford.edu/entries/goodman

Wikipedia Entr
“New Riddle of Induction” Isn’t Half Bad!

(https://en.wikipedia.org/wiki/New riddle of induction)



https://en.wikipedia.org/wiki/New_riddle_of_induction

Tutorial by Paris on Pure Inductive Logic:

http:/fitelson.org/few/paris_notes.pdf

(Paris explains that the mathematicians just assumed the reasoning in the grue
paradox is invalid, and then continued on their way to erect upon Carnap’s work
a robust formal edifice (= pure inductive logic).)


http://fitelson.org/few/paris_notes.pdf

See “Inductive Logic” in SEP for an excellent overview, and in particular
nice coverage of Carnap’s seminal contributions, which PIL extends.
(https://plato.stanford.edu/entries/logic-inductive)

Inductive Logic

First published Mon Sep 6, 2004, substantive revision Mon Mar 19, 2018

An inductive logic is a logic of evidential support. In a deductive logic, the premises of a valid
deductive argument logically entail the conclusion, where logical entailment means that every
logically possible state of affairs that makes the premises true must make the conclusion truth as
well. Thus, the premises of a valid deductive argument provide total support for the conclusion. An
inductive logic extends this idea to weaker arguments. In a good inductive argument, the truth of the
premises provides some degree of support for the truth of the conclusion, where this degree-of-
support might be measured via some numerical scale. By analogy with the notion of deductive
entailment, the notion of inductive degree-of-support might mean something like this: among the
logically possible states of affairs that make the premises true, the conclusion must be true in (at
least) proportion r of them — where r is some numerical measure of the support strength.

If a logic of good inductive arguments is to be of any real value, the measure of support it articulates
should be up to the task. Presumably, the logic should at least satisfy the following condition:

Criterion of Adequacy (CoA):

The logic should make it likely (as a matter of logic) that as evidence accumulates, the total body
of true evidence claims will eventually come to indicate, via the logic’s measure of support, that
false hypotheses are probably false and that true hypotheses are probably true.

The CoA stated here may strike some readers as surprisingly strong. Given a specific logic of
evidential support, how might it be shown to satisfy such a condition? Section 4 will show precisely
how this condition is satisfied by the logic of evidential support articulated in Sections 1 through 3
of this article.

This article will focus on the kind of the approach to inductive logic most widely studied by
epistemologists and logicians in recent years. This approach employs conditional probability
functions to represent measures of the degree to which evidence statements support hypotheses.
Presumably, hypotheses should be empirically evaluated based on what they say (or imply) about
the likelihood that evidence claims will be true. A straightforward theorem of probability theory,
called Bayes’ Theorem, articulates the way in which what hypotheses say about the likelihoods of
evidence claims influences the degree to which hypotheses are supported by those evidence claims.
Thus, this approach to the logic of evidential support is often called a Bayesian Inductive Logic or a
Bayesian Confirmation Theory. This article will first provide a detailed explication of a Bayesian
approach to inductive logic. It will then examine the extent to which this logic may pass muster as
an adequate logic of evidential support for hypotheses. In particular, we will see how such a logic
may be shown to satisfy the Criterion of Adequacy stated above.



https://plato.stanford.edu/entries/logic-inductive

Simple Inductive-Reasoning Example
from Pollock, for Peek Ahead to
The Lottery Paradox ...
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Keith tells you that the morning news predicts rain in
Troy today. However, Alvin tells you that the same news
report predicted sunshine.
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Imagine the following: Keith tells you that the morning news
predicts rain in Tucson today. However, Alvin tells you that the
same news report predicted sunshine.

Without any other source of information, it would be irrational to
place belief in either Keith’s or Alvin’s statements.

Further, suppose you happened to watch the noon news report,
and that report predicted rain. Then you should believe that it
will rain despite your knowledge of Alvin’s argument.



Defeasible Reasoning in OSCAR

K- Keith says that M N
A- Alvin says that ~M

= —
= 44— X

M- The morning news said that R

R- It is going to rain this afternoon

N- The noon news says that R

0 <€
2
A

All such can be absorbed into our inductive logics
and our automated inductive reasoners (= our Al).
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probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that
t/ won’t win sails through— and this of course works for each ticket. Hence we have:
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(The contradiction we sketched earlier has arrived.)




A Solution to The Lottery Paradox ...
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... but let’s use the simpler scheme.
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Any proposition p such that prob(p) < | is at most
evident.

Any rational belief that p, where the basis for
p is at most evident, is at most an evident (=
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Sequence |, Rigorized”

Let D be a meticulous and perfectly accurate
description of a 1,000,000,000,000-ticket lottery,
of which rational agent a is fully apprised.

From D it obviously can be proved that either ticket | will
win or ticket 2 will win or ... or ticket 1,000,000,000,000
will win. Let’s write this (exclusive) disjunction as follows:

Wti&Wtod ... Wty (1)

We then deduce from this that there is at least one ticket that will
win, a proposition represented — using standard notation — as:

3t Wt (2)

Very well; perfectly clear so far. And now we can add another deductive step:
Since our rational agent a can follow this deduction sequence to this point,
and since D is assumed to be indubitable, it follows that our rational agent in
turn believes (2); i.e., we conclude Sequence | by obtaining the following:

B,3t,Wt; (3)
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Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular

ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,

we can write the probability for each ticket to win as a conjunction:
prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti; AB,~Wits A...NB,Wtyr (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B,(-Wti AN=Wita A... AN=Witip)  (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)




Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.

From D it obviously can be proved that the probability of a particular

ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,

we can write the probability for each ticket to win as a conjunction:
prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti; AB,~Wits A...NB,Wtyr (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B,(-Wti AN=Wita A... AN=Witip)  (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)

4




Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B,-Wti; AB,~Wits A...NB,Wtyr (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B,(-Wti AN=Wita A... AN=Witip)  (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)

4




Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,

we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:

4

Of course, if a rational agent believes P, and believes Q as well, it follows that that

agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B,(-Wti AN=Wita A... AN=Witip)  (3)

But (3) is logically equivalent to the statement that there doesn’t exist a winning

ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)



Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B2-Wt, AB2-Wty A...AB2-Wtip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B,(-Wti AN=Wita A... AN=Witip)  (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)

4




Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,

we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B2-Wt, AB2-Wty A...AB2-Wtip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:

4

But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)



Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B2-Wt, AB2-Wty A...AB2-Wtip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B2(-Wti A=Wty A... A=Wtir) (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B,-3t,Wt;, (4)

4




Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B2-Wt, AB2-Wty A...AB2-Wtip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B2(-Wti A=Wty A... A=Wtir) (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

4




Sequence 2,“Rigorized”

As in Sequence |, once again let D be a meticulous and perfectly accurate description
of a 1,000,000,000,000-ticket lottery, of which rational agent a is fully apprised.
From D it obviously can be proved that the probability of a particular
ticket ti winning is | in 1,000,000,000,000. Using ‘I T’ to denote | trillion,
we can write the probability for each ticket to win as a conjunction:
4  prob(Wty) = 17000700(1)70007000 = 11T A prob(Wty) = % A ... N\ prob(Wtyp) = % (1)
For the next step, note that the probability of ticket t; winning is lower than, say, the
probability that if you walk outside a minute from now you will be flattened on the
spot by a door from a 747 that falls from a jet of that type cruising at 35,000 feet.
Since you have the rational belief that death won't ensue if you go outside (and have
this belief precisely because you believe that the odds of your sudden demise in this
manner are vanishingly small), the inference to the rational belief on the part of a that

t) won’t win sails through— and this of course works for each ticket. Hence we have:
B2-Wt, AB2-Wty A...AB2-Wtip (2)
Of course, if a rational agent believes P, and believes Q as well, it follows that that
agent will believe the conjunction P & Q. Applying this principle to (2) yields:
B2(-Wti A=Wty A... A=Wtir) (3)
But (3) is logically equivalent to the statement that there doesn’t exist a winning
ticket; i.e., (3) is logically equivalent to this result from Sequence 2:

B2-3t,Wt; (4)

4




Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.

Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.



Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.



Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3) B2-3t,Wt; (4)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.



Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3) B2-3t,Wt; (4)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.



Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B SHA 1 :(3)4)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.



Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.



Paradox Solved!

Deduction preserves strength.
Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.

B2-Wt, AB-Wty A ... AB-Wtip (2)



Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.

B2-Wt, %[BZ%WISQ)/\ LLABSWHr  (2)




Paradox Solved!

Deduction preserves strength.

Clashes are resolved in favor of higher strength;
clashes propagate backwards through inverse
deduction; if no higher-strength factors, suspend belief.
B3t Wt; (3)
Any proposition p such that prob(p) < | is at most

evident.
Any rational belief that p, where the basis for

p is at most evident, is at most an evident (=
level 3) belief.

B2-Wt, %[BZ%WISQ)/\ LLABSWHr  (2)

This is why, to Mega Millions ticket holder:
“Sorry. I'm rational, and | believe you won’t win.”



To be clear about the effects of the first principle:
- B2 -3EWx AB23zWa!
-B2-EWx AB23zW 2!
- B 2€Wx AB 3zWa!

Clashes are resolved in favor of higher strength; clashes
propagate backwards through inverse deduction, preserving
affirmation/belief of premises as far as is possible; if no
higher-strength factors, suspend belief. (This means that in this
case belief at level 4 also shoots down belief at level 2,and level I. This is
sort of bizarre, because to retain the belief (at levels 3, 2, |) that every
particular ticket won'’t win, the step that gets to believing the existential
formula is blocked. Pollock doesn’t have steps in his “arguments.” Our
agents thus ends up believing at all levels that some ticket will win, and
believing at all levels 3 and down, of each particular ticket, that it won’t win.)




Engineer and apply this
in the real world, to save
lives ...
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Abstract: Suppose an artificial agent d,qj, as time unfolds,
(i) receives from multiple artificial agents (which may,
in turn, themselves have received from yet other such
agents...) propositional content, and (ii) must solve an
ethical problem on the basis of what it has received.
How should a,4j adjudicate what it has received in order
to produce such a solution? We consider an environment
infused with logicist artificial agents ay, a,,..., a, that
sense and report their findings to “adjudicator” agents
who must solve ethical problems. (Many if not most of
these agents may be robots.) In such an environment,
inconsi y is a virtual : @39y may, for instance,
receive a report from @, that proposition ¢ holds, then from
a, that ~¢ holds, and then from a; that neither ¢ nor ~¢
should be believed, but rather i instead, at some level of
likelihood. We further assume that agents receiving such
incompatible reports will nonetheless sometimes simply
need, before long, to make decisions on the basis of these
reports, in order to try to solve ethical problems. We pro-
vide a solution to such a quandary: Al capable of adjudi-
cating competing reports from subsidiary agents through
time, and delivering to humans a rational, ethically correct
(relative to underlying ethical principles) recommendation
based upon such adjudication. To illuminate our solution,
we anchor it to a particular scenario.
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1 Introduction

Neurobiologically normal, mature human beings often enjoy
the luxury of being able to make decisions in and unto
themselves. A hot bumer on a stove, if mistakenly touched,
can lead to a rather quick decision to pull away; and while
such a decision usually happens by reflex, the human
in question can then inspect his/her finger and decide
whether or not treatment is needed. But as we know, deci-
sion-making is not always this independent; sometimes
what humans must decide must factor in what has been
received from other humans. When this happens, the situa-
tion can be quite tricky. Perhaps this is especially true when
the required decision is needed in order to try to resolve
some ethical problem. Note that in the course of human
affairs, profound ethical decisions have long needed to be
made in these kinds of buzzing, dynamic, dialectical, multi-
agent scenarios, where all the agents are humans. Deep and
challenging legal cases provide a case in point,! as for that
matter so do command-and-control challenges to humans
inwarfare, a domain that our case study given below relates
to.2 But our task herein is to formalize the Al correlate of this
kind of tricky situation and to propose a way for a new kind
of Al to solve the correlate.

This Al correlate, in broad strokes for the moment,
has the following structure: An artificial agent a,q;, as

1 It would, e.g., be quite interesting to see how an artificial agent of
the type introduced in the present paper would, if suitably “armed”
with starting information, adjudicate the Dreyfus case, covered bril-
liantly in literary fashion by Proust [68], and in hard-nosed journal-
istic fashion in ref. [69].

2 For a deeper, more complex case study in this domain, it would be
interesting to see whether decision-making as to when to engage
Pershing’s new-world forces in WW I, which involved many a mind
interacting with Pershing’s, could be automated. For background,
see ref. [70].

3 Open Access. © 2021 Selmer Bringsjord et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
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Figure 3: Overview of the scenario.

and leave more robust implementations to future work.
The third step is also admittedly incomplete for this parti-
cular case study; however, full completion would not
require any new research: one would simply follow the
processes outlined in ref. [8,13]. Finally, Step 4 is also
only partially finished, as its full completion is precluded
by the merely partial implementation of Step 3. Overall,
though, it should be clear that our Four Steps have been
followed.

4 Discussion

We are under no such illusion as that our work will be
embraced immediately by all. In general, we at this point
anticipate two general classes of objections: one that con-
tains technical worries, and a second aimed at alleged
fundamental flaws in logicist Al, at least as such Al is
pursued by us. In what now follows, in conformity with
this two-part division, we first discuss a class of objec-

tions that relate to limitative theorems due, at least ori-
ginally, to Arrow; and then, we proceed to present and
rebut objections that claim our methodology is missing
something crucial.

4.1 Dialectic arising from arrow’s
impossibility theorem and successors

In point of fact, there is no denying that Arrow’s Impossibil-
ity Theorem (AIT) is directly relevant, logico-mathematically
and implementation-wise, to our framework and tech-
nology for adjudication in multi-agent contexts. However,
we cannot expect our readers in the present case to be
familiar with AIT (very nicely presented and proved in ref.
[40], and ably summarized without proof in ref. [41]).
Hence, we must find a shortcut here; and we do, as follows.
We can without loss of generality at the current juncture
take AIT to be based upon the existence ofn artificial agents
ay,..., a, whose action repertoire consists solely in each of

Table 3: Overview of the beliefs. The adjudicator’s beliefs about other agents’ beliefs and its uncertainty level in -p,

Time hdrone Idrone Radar Strength for (adj, t, -p,)
<1 B(hdrone, t,, ~p,) Not considered Not considered B%(adj, ti, ~p,)
b B(hdrone, to, ~p,) W(ldrone, t;, ~p,) Not considered B%(adj, t, ~p,)
ty B(hdrone, t, ~p,) W(ldrone, t,, ~p,) B(radar, t;, p,) B'(adj, t3, -p,)
ty B(hdrone, to, ~p,) B(ldrone, t;, ~p,) B(radar, t;, p,) B*(adj, ts, “py)
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