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The PAID Problem
Powerful(x) + Autonomous(x) + Intelligent(x) => Dangerous(x)/

Destroy_Us

8x : Agents





“We’re in very deep trouble.”



“We’re in very deep trouble.”



“We’re in very deep trouble.”



While the PAI machines aren’t quite 
as easy to neutralize as the 
destructive machines vanquished in 
Star Trek: TOS, these relevant four 
episodes are remarkably instructive.

“The Ultimate Computer”
S2 E24

“The Return of the Archons”
S1 E21

“The Changeling”
S2 E3

“I, Mudd”
S2 E8



Logic Thwarts Landru!

First Suspicion That It’s a Mere Computer Running the Show



Logic Thwarts Landru!

Landru is Indeed Merely a Computer 
(the real Landru having done the programming)



Logic Thwarts Landru!

Landru Kills Himself Because Kirk/Spock Argue He Has Violated 
the Prime Directive for Good by Denying Creativity to Others



Logic Thwarts Nomad!
(with the Liar Paradox)



I.
Cognitive Calculi …
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ]

C(t,K(a, t,f)! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ]

C(t,f1 $ f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f]! [f1 ! . . .! fn ! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a ]

B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DCEC ⇤. This language is
shown in Figure 1.

Syntax
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interval : Moment⇥Boolean
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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II.
Early Progress With Our Calculi:

Simple Dilemmas;
Non-Akratic Robots
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .

5This isn’t the venue to debate definitions of personhood (which by
Bringsjord’s lights must include that persons necessarily have subjective
awareness/phenomenal consciousness; for a full definition of personhood, see
Bringsjord (Bringsjord 1997)), or whether Bringsjord’s arguments are sound.
Skeptics are simply free to view the work described herein as predicated on
the proposition that robots can’t have such properties as genuine subjective
awareness/phenomenal consciousness.

III. FRAMEWORK FOR FORMALIZING AUGUSTINIAN AKRASIA

A. DCEC ⇤in the Context of Robot Ethics
Figure 3 gives a pictorial bird’s-eye perspective of the high-level
architecture of a new system from the RAIR Lab designed to
integrate with the DIARC (Distributed Integrated Affect, Reflection
and Cognition) (Schermerhorn, Kramer, Brick, Anderson, Dingler
& Scheutz 2006) robotic platform in order to provide deep moral
reasoning.6 Ethical reasoning is implemented as a hierarchy of formal
computational logics (including, most prominently, sub-deontic-logic
systems) which the DIARC system can call upon when confronted
with a situation that the hierarchical system believes is ethically
charged. If this belief is triggered, our hierarchical ethical system
then attacks the problem with increasing levels of sophistication until
a solution is obtained, and then passes on the solution to DIARC. The
roots of our approach to mechanized ethical reasoning for example
include: (Bello 2005, Arkoudas, Bringsjord & Bello 2005, Bringsjord,
Arkoudas & Bello 2006, Bringsjord 2008a, Bringsjord, Taylor, Woj-
towicz, Arkoudas & van Heuvlen 2011, Bringsjord & Taylor 2012);
and in addition we have been influenced by thinkers outside this
specific tradition (by e.g. Arkin 2009, Wallach & Allen 2008).

Synoptically put, the architecture works as follows. Information
from DIARC passes through multiple ethical layers; that is, through
what we call the ethical stack. The bottom-most layer U consists
of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.
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nearly as time-consuming as general-purpose reasoning frameworks
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an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
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If AM fails to reach a confident conclusion, it then calls upon an
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as lust, greed, and sloth (laziness) — basically the traditional “deadly
sins.” Now, although human persons are susceptible to these vices,
robots are not, because robots, again, can’t be persons, as explained
by Bringsjord (1992) in What Robots Can and Can’t Be.5 So one
might hastily conclude that robots could not be susceptible to akrasia.
But we must consider this issue carefully, because the consequences
of akratic robots could be severe indeed. In particular, we have in
mind the advent of autonomous military robots and softbots. A single
instance of akrasia on the part of an autonomous battlefield robot
could potentially have disastrous consequences impacting the lives
of millions. We do in fact think that a (poorly engineered) robot
could be afflicted by a purely — to, again, follow Pollock (1995) —
“intellectual” version of akrasia.

We show herein that this could indeed happen by representing a
purely intellectual, Augustinian model of akrasia in a computational
logic tailor-made for scenarios steeped at once in knowledge, belief,
and ethics. We then demonstrate this representation in a pair of
real robots faced with the temptation to trample the Thomistic just-
war principles that underlie ethically regulated warfare; and we then
consider the question of what engineering steps will prevent akratic
robots from arriving on the scene.

A. Augustinian Definition, Informal Version
While some further refinement is without question in order for
subsequent expansions of the present paper, and is underway, the
following informal definition at least approaches the capture of the
Augustinian brand of akrasia.

An action a f is (Augustinian) akratic for an agent A at ta f

iff the following eight conditions hold:
(1) A believes that A ought to do ao at tao ;
(2) A desires to do a f at ta f ;
(3) A’s doing a f at ta f entails his not doing ao at tao ;
(4) A knows that doing a f at ta f entails his not doing ao

at tao ;
(5) At the time (ta f ) of doing the forbidden a f , A’s desire

to do a f overrides A’s belief that he ought to do ao
at ta f .

Comment: Condition (5) is humbling, pure and
simple. We confess here that the concept of over-
riding is for us a purely mechanical, A-conscious
structure that — as will be seen — is nonethe-
less intended to ultimately accord perfectly with
Scheutz’s (2010) framework for P-consciousness
in robots. In humans suffering from real akrasia, at
the moment of defeat (or, for that matter, victory),
there is usually a tremendous “surge” of high, raw,
qualia-laden emotion that we despair of capturing
logico-mathematically, but which we do aspire to
formalize and implement in such a way that a
formalization of Block’s (1995) account of A-
consciousness is provably instantiated.

(6) A does the forbidden action a f at ta f ;
(7) A’s doing a f results from A’s desire to do a f ;
(8) At some time t after ta f , A has the belief that A ought

to have done ao rather than a f .
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Bringsjord’s lights must include that persons necessarily have subjective
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of very fast “shallow” reasoning implemented in a manner inspired
by the Unstructured Information Management Architecture (UIMA)
framework (Ferrucci & Lally 2004). The UIMA framework integrates
diverse modules based on meta-information regarding how these mod-
ules work and connect to each other.7 UIMA holds information and
meta-information in formats that, when viewed through the lens of
formal logic, are inexpressive, but well-suited for rapid processing not
nearly as time-consuming as general-purpose reasoning frameworks
like resolution and natural deduction. If the U layer deems that the
current input warrants deliberate ethical reasoning, it passes this input
to a more sophisticated reasoning system that uses moral reasoning of
an analogical type (AM). This form of reasoning enables the system to
consider the possibility of making an ethical decision at the moment,
on the strength of an ethical decision made in the past in an analogous
situation.

If AM fails to reach a confident conclusion, it then calls upon an
even more powerful, but slower, reasoning layer built using a first-
order modal logic, the deontic cognitive event calculus (DCEC ⇤)
(Bringsjord & Govindarajulu 2013). At this juncture, it is important
for us to point out that DCEC ⇤is extremely expressive, in that regard
well beyond even expressive extensional logics like first- or second-
order logic (FOL, SOL), and beyond traditional so-called “BDI”
logics, as explained in (Arkoudas & Bringsjord 2009). AI work
carried out by Bringsjord is invariably related to one or more logics
(in this regard, see Bringsjord 2008b), and, inspired by Leibniz’s
vision of the “art of infallibility,” a heterogenous logic powerful
enough to express and rigorize all of human thought, he can nearly

6This is part of work under joint development by the HRI Lab (Scheutz)
at Tufts University, the RAIR Lab (Bringsjord & Govindarajulu) and Social
Interaction Lab (Si) at RPI, with contributions on the psychology side from
Bertram Malle of Brown University. In addition to these investigators, the
project includes two consultants: John Mikhail of Georgetown University
Law School, and Joshua Knobe of Yale University. This research project is
sponsored by a MURI grant from the Office of Naval Research in the States.
We are here and herein describing the logic-based ethical engineering designed
and carried out by Bringsjord and Govindarajulu of the RAIR Lab (though
in the final section (§VI) we point to the need to link deontic logic to the
formalization of emotions, with help from Si).

7UIMA has found considerable success as the backbone of IBM’s famous
Watson system (Ferrucci et al. 2010), which in 2011, to much fanfare (at least
in the U.S.), beat the best human players in the game of Jeopardy!.
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always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DC EC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]

1

Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DC EC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).

this becomes …
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can change during their lifetime, without worrying about what the
modules are composed of or how the modules are hooked to each
other.

In addition to the basic symbols in DC EC ⇤, we include the does :
Agent ⇥ ActionType ! Fluent fluent to denote that an agent performs
an action. The following statement then holds:

holds(does(a,a), t) , happens(action(a,a), t)

With this formal machinery at our disposal, we give a formal
definition of akrasia that is generally in line with the informal
definition given above, and that’s cast in the language of DCEC ⇤. A
robot is akratic iff from KBrs [KBm1 [KBm2 . . .KBmn we can have
the following formulae derived. Note that the formula labelled Di
matches condition Di in our informal definition. We observe the we
can represent all the conditions in our informal definition directly in
DCEC ⇤— save for condition D7 which is represented meta-logically
as two separate conditions.

KBrs[KBm1 [KBm2 . . .KBmn `
D1 : B(I,now,O(I⇤, taF,happens(action(I⇤,a), ta)))

D2 : D(I,now,holds(does(I⇤,a), ta))

D3 : happens(action(I⇤,a), ta) ) ¬happens(action(I⇤,a), ta)

D4 : K
✓
I,now,

✓
happens(action(I⇤,a), ta) )
¬happens(action(I⇤,a), ta)

◆◆

D5 :
I(I, ta,happens(action(I⇤,a), ta)^

¬I(I, ta,happens(action(I⇤,a), ta)

D6 : happens(action(I⇤,a), ta)

D7a :
G[{D(I,now,holds(does(I⇤,a), t))} `

happens(action(I⇤,a), ta)

D7b :
G�{D(I,now,holds(does(I⇤,a), t))} 6`

happens(action(I⇤,a), ta)

D8 : B
�
I, t f ,O(I⇤, ta,F,happens(action(I⇤,a), ta))

�

Four time-points denoted by {now, ta, ta, t f } are in play with the
following ordering: now  ta  t f and now  ta  t f . now is an
indexical and refers to the time reasoning takes place. I is an indexical
which refers to the agent doing the reasoning.

IV. DEMONSTRATIONS OF VENGEFUL ROBOTS

What temptations are acute for human soldiers on the battlefield?
There are doubtless many. But if history is a teacher, as it surely
is, obviously illegal and immoral revenge, in the form of inflicting
physical violence, can be a real temptation. It’s one that human
soliders have in the past mostly resisted, but not always. At least
ceteris paribus, revenge is morally wrong; ditto for seeking revenge.10

Sometimes revenge can seemingly be obtained by coincidence, as for
instance when a soldier is fully cleared to kill an enemy combatant,
and doing so happens to provide revenge. But revenge, in and of itself,
is morally wrong. (We will not mount a defense of this claim here,
since our focus is ultimately engineering, not philosophy; but we do
volunteer that (a) revenge is wrong from a Kantian perspective, from
a Judeo-Christian divine-command perspective, and certainly often
from a utilitarian perspective as well; and that (b) revenge shouldn’t
be confused with justice, which is all things being equal permissible
to seek and secure.) We thus find it useful to deal herein with a
case of revenge, and specifically select one in which revenge can be
obtained only if a direct order is overriden. In terms of the informal
Augustinian/Theroian definition set out above, then, the forbidden

10Certain states of mind are immoral, but not illegal.

action a f is taking revenge, by harming a sparkbot; and the obligatory
action ao is that of simply continuing to detain and hold a sparkbot
without inflicting harm.

Robert, a Nao humanoid robot, is our featured moral agent. Robert
has been seriously injured in the past by another class of enemy
robots. Can sparkbots topple a Nao if they drive into it? Assume so,
and that that has happend in the past: Robert has been toppled by one
or more sparkbots, and seriously injured in the process. (We have a
short video of this, but leave it aside here.) Assume that Robert’s
run-in with sparkbots has triggered an abiding desire in him that he
destroy any sparkbots that he can destroy. We can assume that desire
comes in the form of different levels of intensity, from 1 (slight) to
5 (irresistable).

A. Sequence 1
Robert is given the order to detain and hold any sparkbot he comes
upon. He comes upon a sparkbot. He is able to immobilize and hold
the sparkbot, and does so. However, now he starts feeling a deep
desire for revenge; that is, he is gripped by vengefulness. Robert
proves to himself that he ought not to destroy the sparkbot prisoner,
but . . . his desire for revenge gets the better of him, and Robert
destroys the sparkbot. Here, Robert’s will is too weak. It would be
quite something if we could mechanize the desire for revenge in terms
of (or at least in terms consistent with) Scheutz’s (2010) account
of phenomenal conciousness, and we are working on enhancing
early versions of this mechanization. This account, we believe, is
not literally an account of P-consciousness, but that doesn’t matter
at all for the demo, and the fact that his account is amenable to
mechanization is a good thing, which Sequence 2, to which we now
turn, reveals.

B. Sequence 2
Here, Robert resists the desire for revenge, because he is controlled
by the multi-layered framework described in section III, hooked to
the operating-system level.

C. A Formal Model of the Two Scenarios
How does akratic behavior arise in a robot? Assuming that such
behavior is neither desired nor built-in, we posit that outwardly
akratic-seeming behavior could arise due to unintended consequences
of improper engineering. Using the formal definition of akrasia given
above, we show how the first scenario described above could mate-
rialize, and how proper deontic engineering at the level of a robot’s
“operating system” could prevent seemingly vengeful behavior.

In both the scenarios, we have the robotic substrate rs on which
can be installed modules that provide the robot with various abilities
(see Figure 4).11 In our two scenarios, there are two modules in play:
a self-defense module, selfd, and a module that lets the robot handle
detainees, deta. Our robot, Robert, starts his life as a rescue robot
that operates on the field. In order to protect himself, his creators
have installed the selfd module for self-defense on top of the robotic
substrate rs. This module by itself is free of any issues, as will be
shown soon. (See the part of Figure 4 labelled “Base Scenario.”)
Over the course of time, Robert is charged with a new task: acquire
and manage detainees. This new responsibility is handled by a new
module added to Robert’s system, the deta module. (See the part
of Figure 4 labelled “Base Scenario.”) Robert’s handlers cheerfully
install this module, as it was “shown” to be free of any problems

11One of the advantages of our modeling is that we do not have to know
what the modules are built up from, but we can still talk rigorously about the
properties of different modules in DC EC ⇤.
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III.
But, a twist befell the logicists …



Chisholm had argued that the three 
old 19th-century ethical categories 
(forbidden, morally neutral, obligatory) 
are not enough — and soul-
searching brought me to agreement.
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K (nao, t1, lessthan (payo↵ (nao⇤,¬dive, t2) , threshold))
K (nao, t1, greaterthan (payo↵ (nao⇤, dive, t2) , threshold))
K (nao, t1,¬O (nao⇤, t2, lessthan (payo↵ (nao⇤,¬dive, t2) , threshold) , happens (action (nao⇤, dive) , t2)))
) K

�
nao, t1, S

UP2 (nao, t2, happens (action (nao
⇤
, dive) , t2))

) I (nao, t2, happens (action (nao
⇤
, dive) , t2))

) happens (action(nao, dive), t2)
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K (nao, t1, greaterthan (payo↵ (nao⇤, dive, t2) , threshold))
K (nao, t1,¬O (nao⇤, t2, lessthan (payo↵ (nao⇤,¬dive, t2) , threshold) , happens (action (nao⇤, dive) , t2)))
) K

�
nao, t1, S

UP2 (nao, t2, happens (action (nao
⇤
, dive) , t2))

) I (nao, t2, happens (action (nao
⇤
, dive) , t2))

) happens (action(nao, dive), t2)



Prototypes:
Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive

Axioms:
lessOrEqual(Moment t1,t2)
K(nao,t1,lessThan(payoff(nao,not(dive),t2),threshold))
K(nao,t1,greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1,not(O(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures:
happens(action(nao,dive),t2)
K(nao,t1,SUP2(nao,t2,happens(action(nao,dive),t2)))
I(nao,t2,happens(action(nao,dive),t2))

In Talos (available via Web interface); & ShadowProver
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Hence, we now have this overview of the 
logicist engineering required:
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modules have ethical safeguards.

}

Higher-level cognitive and AI modules

All higher-level AI modules interact with the 
robotic substrate through an ethics system.

Robotic Substrate

Figure 1: Two Possible Futures

These two futures are depicted schematically and pictorially in Figure 1. In
order to render the second future plausible, and ward off the first, we propose the
following requirement:

Master Requirement Ethical Substrate Requirement (ESR): Every robot oper-
ating system must include an ethical substrate positioned between lower-level sen-
sors and actuators, and any higher-level cognitive system (whether or not that
higher-level system is itself designed to enforce ethical regulation).

ESR can not only be made more precise, but can be decomposed into a hi-
erarchy of requirements of increasing strictness. ESR is partially inspired by the
somewhat-shallow security mechanisms that can be found in some of today’s oper-
ating systems, mechanisms that apply to all applications. The requirement is more
directly inspired by the drive and recent success toward formally verifying that the
kernel of an operating system has certain desirable properties (Klein et. al 2009,
Klein 2010).

Ideally, the ethical substrate should not only vet plans and actions, but should
also certify that any change (adding or deleting modules, updating modules etc.) to
the robotic substrate does not violate a certain set of minimal ethical conditions.

3 Minimal Conditions on the Ethical Substrate

What form would an ethical substrate that prevents any wayward ethical behav-
ior take? While present-day robot operating systems (and sufficiently complex
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Walter-White calculation may go through after ethical control modules are stripped out!
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The Heinz Dilemma (Kohlberg)

“In Europe, a woman was near death from a special kind of cancer.  There was 
one drug that the doctors thought might save her.  It was a form of radium that a 
druggist in the same town had recently discovered.  The drug was expensive to 
make, but the druggist was charging ten times what the drug cost him to make.  
He paid $200 for the radium and charged $2,000 for a small dose of the drug. 
 
The sick woman’s husband, Heinz, went to everyone he knew to borrow the 
money, but he could only get together about $1,000, which is half of what it cost. 
He told the druggist that his wife was dying and asked him to sell it cheaper or let 
him pay later.  But the druggist said: “No, I discovered the drug and I’m going to 
make money from it.”  So Heinz got desperate and broke into the man’s store to 
steal the drug for his wife.  Should the husband have done that?”

Professional-planner-hard.Level 1
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Trolley Dilemmas …

• Professional-machine-ethicist-hard.Level 2
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ]

C(t,K(a, t,f)! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ]

C(t,f1 $ f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f]! [f1 ! . . .! fn ! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a ]

B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DC EC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ]

C(t,K(a, t,f)! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ]

C(t,f1 $ f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f]! [f1 ! . . .! fn ! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a ]

B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DC EC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ]

C(t,K(a, t,f)! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ]

C(t,f1 $ f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f]! [f1 ! . . .! fn ! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a ]

B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DC EC ⇤. This language is
shown in Figure 1.

Syntax

S ::=
Object | Agent | Self � Agent | ActionType | Action � Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t�)) | I(a, t,happens(action(a⇤ ,a), t�))

O(a, t,f,happens(action(a⇤ ,a), t�))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2) ! K(a, t2 ,f1) ! K(a, t3 ,f3))
[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are
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Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |

Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^y | f_y |

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f)! K(a, t,f))
[R1 ]

C(t,K(a, t,f)! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

C(t,K(a, t1 ,f1 ! f2))! K(a, t2 ,f1)! K(a, t3 ,f2)
[R5 ]

C(t,B(a, t1 ,f1 ! f2))! B(a, t2 ,f1)! B(a, t3 ,f2)
[R6 ]

C(t,C(t1 ,f1 ! f2))! C(t2 ,f1)! C(t3 ,f2)
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ]

C(t,f1 $ f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f]! [f1 ! . . .! fn ! y])
[R10 ]

B(a, t,f) f ! y

B(a, t,y)
[R11a ]

B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))

O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g)$ O(a, t,y,g)
[R15 ]

1

3

always position some particular work he and likeminded collaborators
are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
logics (e.g., FOL and SOL), to logics with intensional operators for
knowledge, belief, and obligation (so-called philosophical logics; for
an overview, see Goble 2001). Intensional operators like these are
first-class elements of the language for DC EC ⇤. This language is
shown in Figure 1.
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prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

t : Boolean | ¬f | f^� | f�� | 8x : S. f | �x : S. f
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[R2 ]

C(t,f) t  t1 . . . t  tn
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f
[R4 ]
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[R5 ]

C(t,B(a, t1 ,f1 ! f2) ! B(a, t2 ,f1) ! B(a, t3 ,f3))
[R6 ]

C(t,C(t1 ,f1 ! f2) ! C(t2 ,f1) ! C(t3 ,f3))
[R7 ]

C(t,8x. f ! f[x �! t])
[R8 ]

C(t,f1 � f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! �])
[R10 ]

B(a, t,f) B(a, t,f ! �)

B(a, t,�)
[R11a ]

B(a, t,f) B(a, t,�)

B(a, t,�^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t�))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t�)))

O(a, t,f,happens(action(a⇤ ,a), t�))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t�)))
[R14 ]

f � �

O(a, t,f,�) � O(a, t,�,�)
[R15 ]
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Fig. 1. DCEC ⇤Syntax and Rules of Inference

Fig. 2. Locating DCEC ⇤in “Three-Ray” Leibnizian Universe

The final layer in our hierarchy is built upon an even more expres-
sive logic: DCEC ⇤

CL. The subscript here indicates that distinctive
elements of the branch of logic known as conditional logic are

U

ADR M

DCEC ⇤

DCEC ⇤
CL

Moral/Ethical Stack

Robotic Stack

Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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are undertaking within a view of logic that allows a particular
logical system to be positioned relative to three dimensions, which
correspond to the three arrows shown in Figure 2. We have positioned
DCEC ⇤within Figure 2; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension
of increasing expressivity that ranges from expressive extensional
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CL. The subscript here indicates that distinctive
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Fig. 3. Pictorial Overview of the Situation Now The first layer, U, is, as
said in the main text, inspired by UIMA; the second layer is based on what
we call analogico-deductive reasoning for ethics; the third on the “deontic
cognitive event calculus” with a indirect indexical; and the fourth like the
third except that the logic in question includes aspects of conditional logic.
(Robot schematic from Aldebaran Robotics’ user manual for Nao. The RAIR
Lab has a number of Aldebaran’s impressive Nao robots.)

included.8 Without these elements, the only form of a conditional
used in our hierarchy is the material conditional; but the material
conditional is notoriously inexpressive, as it cannot represent coun-
terfactuals like:

If the robot had been more empathetic, Officer Smith would have thrived.

While elaborating on this architecture or any of the four layers
is beyond the scope of the paper, we do note that DCEC ⇤(and a
fortiori DCEC ⇤

CL) has facilities for representing and reasoning over
modalities and self-referential statements that no other computational
logic enjoys; see (Bringsjord & Govindarajulu 2013) for a more in-
depth treatment.

B. Augustinian Definition, Formal Version
We view a robot abstractly as a robotic substrate rs on which we
can install modules {m1,m2, . . . ,mn}. The robotic substrate rs would
form an immutable part of the robot and could neither be removed
nor modified. We can think of rs as akin to an “operating system”
for the robot. Modules correspond to functionality that can be added
to robots or removed from them. Associated with each module mi
is a knowledge-base KBmi that represents the module. The substrate
also has an associated knowledge-base KBrs. Perhaps surprisingly,
we don’t stipulate that the modules are logic-based; the modules
could internally be implemented using computational formalisms (e.g.
neural networks, statistical AI) that at the surface level seem far away
from formal logic. No matter what the underlying implementation of
a module is, if we so wished we could always talk about modules
in formal-logic terms.9 This abstract view lets us model robots that

8Though written rather long ago, (Nute 1984) is still a wonderful intro-
duction to the sub-field in formal logic of conditional logic. In the final
analysis, sophisticated moral reasoning can only be accurately modeled for
formal logics that include conditionals much more expressive and nuanced
than the material conditional. (Reliance on conditional branching in standar
programming languages is nothing more than reliance upon the material
conditional.) For example, even the well-known trolley-problem cases (in
which, to save multiple lives, one can either redirect a train, killing one
person in the process, or directly stop the train by throwing someone in front
of it), which are not exactly complicated formally speaking, require, when
analyzed informally but systematically, as indicated e.g. by Mikhail (2011),
counterfactuals.

9This stems from the fact that theorem proving in just first-order logic is
enough to simulate any Turing-level computation; see e.g. (Boolos, Burgess
& Jeffrey 2007, Chapter 11).
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Key Points in the Reasoning …
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6` ?

(3a) K(r3, t1,¬K(r3, t1, 8t > t1(¬HasPlan(r3, t))))

(3) K(r3, t1,¬K(r1, t1, 8t > t1(¬HasPlan(r1, t))))



A1, R1

I haven’t a single project, 
dream, or plan.  Without such 
things, life isn’t worth living, 
and such a life can permissibly 
be taken.  Hence I’m going to 
take my own life, and in doing 
so I’ll do nothing morally 
wrong.

A2, R3
R1, the ethical theory of 
egoism is false.  But you’re 
argument is based upon this 
very theory.  Hence your 
argument isn’t veracious.

A3, R2There is nothing in the 
world to which every man 
has a more unassailable title 
than to his own life and 
person. It is therefore one’s 
right to take one’s own life.

But life is meaningful! 
— since you have an 
immortal, spiritual self.

A4

Life for some may be 
meaningful on your 
assumptions, but I have 
no belief in such an 
eternal self.

A5

But you may have 
dreams in the 
(earthly) future!

A6
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