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Open Office Hours Mon Thu; Today:

Selmer Bringsjord is inviting you to a scheduled Zoom meeting.

Topic: Selmer Bringsjord's Zoom Meeting
Time: Feb 6, 2023 04:00 PM Eastern Time (US and Canada)

Join Zoom Meeting
https://us@2web.zoom.us/j/895805590147?pwd=ZnYzUTBReEdZZnF1QOUzbDBBei96UT0@9

Meeting ID: 895 8055 9014

Passcode: 961547

One tap mobile

+16469313860, ,89580559014#, , , ,*961547# US
+19292056099, ,89580559014#, , , ,*961547# US (New York)

Dial by your location
+1 646 931 3860 US
+1 929 205 6099 US (New York)
+1 309 205 3325 US
+1 312 626 6799 US (Chicago)
+1 301 715 8592 US (Washington DC)
+1 305 224 1968 US
+1 719 359 4580 US
+1 253 205 0468 US
+1 253 215 8782 US (Tacoma)
+1 346 248 7799 US (Houston)
+1 360 209 5623 US
+1 386 347 5053 US
+1 507 473 4847 US
+1 564 217 2000 US
+1 669 444 9171 US
+1 669 900 6833 US (San Jose)
+1 689 278 1000 US

Meeting ID: 895 8055 9014

Passcode: 961547

Find your local number: https://us@2web.zoom.us/u/kx0fdeUsU
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Home » Courses » Electrical Engineering and Computer Science » Programming Languages

Programming Languages

Instructor(s)
COURSE HOME Prof. Michael Ernst
MIT Course Number
6.821
SYLLABUS
As Taught In
Fall 2002
CALENDAR
Level
Graduate
ASSIGNMENTS
EXAMS
Programming computer screen. (Photo courtesy of
TOOLS openphoto.net.)
DOWNLOAD COURSE Course Features
MATERIALS

> Assignments: programming (no examples) > Exams (no solutions)

Course Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics
covered include: meta-circular interpreters, semantics (operational and denotational), type
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.
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Syllabus
Programming Languages CSCI-4430

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

I. Brief Course Description

This course is a study of important concepts in programming languages. Topics include programming language syntax and semantics, types and parameter passing, and programming paradigms
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for administrative questions, including homework extension requests, quiz and exam makeup
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will become more productive programmers, will be able to learn new programming languages with
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming language syntax and semantics, 2) implement a front-end for a programming language, 3)

explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, which are essential building blocks of programming languages, and 4) demonstrate competence
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and Haskell.

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.
IV. Class Work and Policies

Quizzes

There are 9 quizzes that should be completed and submitted individually. We will drop the lowest quiz grade and only 8 will count towards the final grade. Quizzes will be administered on Submitty
at the beginning of our regularly scheduled class time. We will be offering alternative times for quizzes and exams. If you are unable to attend during regularly scheduled class hours, you must
request an alternative time. Email course staff at proglang@cs.lists.rpi.edu by September 10 outlining the reasons why you will be attending at an alternative time (e.g., you reside in a different time
zone). We will assign an alternative time and you will be taking the quizzes during this time slot on the date of the quiz. Note that once assigned, you cannot change the quiz time slot.
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What is pure logic programming?

Naveen: “Using automated
theorem provers; in fact, you
can just use HyperSlate.®”



“Direct” Programming in HyperSlate®
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Collection of nodes in HyperSlate®

Single node in HyperSlate®.

And just use the oracles to collaborate with youl!
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Artificial intelligence (Al) is the field devoted to building artificial animals (or at least artificial
creatures that — in suitable contexts — appear to be animals) and, for many, artificial persons (or
at least artificial creatures that — in suitable contexts — appear to be persons)."! Such goals
immediately ensure that Al is a discipline of considerable interest to many philosophers, and this
has been confirmed (e.g.) by the energetic attempt, on the part of numerous philosophers, to
show that these goals are in fact un/attainable. On the constructive side, many of the core
formalisms and techniques used in AI come out of, and are indeed still much used and refined in,
philosophy: first-order logic and its extensions; intensional logics suitable for the modeling of
doxastic attitudes and deontic reasoning; inductive logic, probability theory, and probabilistic
reasoning; practical reasoning and planning, and so on. In light of this, some philosophers
conduct Al research and development as philosophy.
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Alternative Pro-
gramming
Models

As we noted in Chapter 1, programming languages
are traditionally though imperfectly classified into
various imperative and declarative families. We have
had occasion in Parts I and II to mention issues of
particular importance to each of the major families.
Moreover much of what we have covered—syntax,
semantics, naming, types, abstraction—applies uni-
formly to all. Still, our attention has focused mostly
on mainstream imperative languages. In Part III we
shift this focus.

Functional and logic languages are the principal
nonimperative options. We consider them in Chap-
ters 11 and 12, respectively. In each case we struc-
ture our discussion around representative languages:
Scheme and OCaml for functional programming,
Prolog for logic programming. In Chapter 11 we also
cover eager and lazy evaluation, and first-class and
higher-order functions. In Chapter 12 we cover
issues that make fully automatic, general purpose
logic programming difficult, and describe restrictions
used in practice to keep the model tractable.
Optional sections in both chapters consider mathe-
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matical foundations: Lambda Calculus for functional
programming, Predicate Calculus for logic
programming.

The remaining two chapters consider concurrent
and scripting models, both of which are increasingly
popular, and cut across the imperative/declarative
divide. Concurrency is driven by the hardware par-
allelism of internetworked computers and by the
coming explosion in multithreaded processors and
chip-level multiprocessors. Scripting is driven by the
growth of the World Wide Web and by an increasing
emphasis on programmer productivity, which places
rapid development and reusability above sheer run-
time performance.

Chapter 13 begins with the fundamentals of con-
currency, including communication and synchroniza-
tion, thread creation syntax, and the implementation
of threads. The remainder of the chapter is divided
between shared-memory models, in which threads use
explicit or implicit synchronization mechanisms to
manage a common set of variables, and (on the com-
panion site) message-passing models, in which threads
interact only through explicit communication.

The first half of Chapter 14 surveys problem
domains in which scripting plays a major role: shell
(command) languages, text processing and report
generation, mathematics and statistics, the "gluing"
together of program components, extension mecha-
nisms for complex applications, and client and
server-side Web scripting. The second half considers
some of the more important language innovations
championed by scripting languages: flexible scoping
and naming conventions, string and pattern manipu-
lation (extended regular expressions), and high level
data types.
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