Introducing Pure General Logic
Programming (PGLP), in
HyperSlate®:HyperLog®;

Review of All Inference Rules/

Schemata in PropCalc = &£, -

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAII
2/6/2023

RAI R

Rensselaer Al and Reasoning Lab

Logistics again ...

The Starting Code to Purchase in Bookstore

Your code for starting the registration process is:

To access HyperGrader, HyperSlate, the license agreement,
and to obtain the textbook LAMA-BDLA, go to::

https://rpi.logicamodernapproach.com

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: WIT_h IJ[S soﬁware

instead of LAMA®
paradigm!

https://rpi.logicamodernapproach.com

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: with ts software
instead of LAMA®

https://rpi.logicamodernapproach.com

paradigm!

The email address you enter is case-sensitive!

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: with its software
' ®
https://rpi.logicamodernapproach.com instead of LAMA
paradigm!

The email address you enter is case-sensitive!

Your OS and browser must be fully up-to-date; Chrome
s the best choice, browser-wise (though | use Safari).

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: with its software
' ®
https://rpi.logicamodernapproach.com instead of LAMA
paradigm!

The email address you enter is case-sensitive!

Your OS and browser must be fully up-to-date; Chrome
s the best choice, browser-wise (though | use Safari).

Watch that the link emailed to you doesn’t end up being classified as spam.

Open Office Hours Mon Thu; Today:

Selmer Bringsjord is inviting you to a scheduled Zoom meeting.

Topic: Selmer Bringsjord's Zoom Meeting
Time: Feb 6, 2023 04:00 PM Eastern Time (US and Canada)

Join Zoom Meeting
https://us@2web.zoom.us/j/895805590147?pwd=ZnYzUTBReEdZZnF1QOUzbDBBei96UT0@9

Meeting ID: 895 8055 9014

Passcode: 961547

One tap mobile

+16469313860, ,89580559014#, , , ,*961547# US
+19292056099, ,89580559014#, , , ,*961547# US (New York)

Dial by your location
+1 646 931 3860 US
+1 929 205 6099 US (New York)
+1 309 205 3325 US
+1 312 626 6799 US (Chicago)
+1 301 715 8592 US (Washington DC)
+1 305 224 1968 US
+1 719 359 4580 US
+1 253 205 0468 US
+1 253 215 8782 US (Tacoma)
+1 346 248 7799 US (Houston)
+1 360 209 5623 US
+1 386 347 5053 US
+1 507 473 4847 US
+1 564 217 2000 US
+1 669 444 9171 US
+1 669 900 6833 US (San Jose)
+1 689 278 1000 US

Meeting ID: 895 8055 9014

Passcode: 961547

Find your local number: https://us@2web.zoom.us/u/kx0fdeUsU

Open Office Hours Mon Thu;Today!

Selmer Bringsjord is inviting you to a scheduled Zoom meeting.

Topic: Selmer Bringsjord's Zoom Meeting
Time: Feb 6, 2023 04:00 PM Eastern Time (US and Canada)

Join Zoom Meeting
https://us@2web.zoom.us/j/895805590147?pwd=ZnYzUTBReEdZZnF1QOUzbDBBei96UT0@9

Meeting ID: 895 8055 9014

Passcode: 961547

One tap mobile

+16469313860, ,89580559014#, , , ,*961547# US
+19292056099, ,89580559014#, , , ,*961547# US (New York)

Dial by your location
+1 646 931 3860 US
+1 929 205 6099 US (New York)
+1 309 205 3325 US
+1 312 626 6799 US (Chicago)
+1 301 715 8592 US (Washington DC)
+1 305 224 1968 US
+1 719 359 4580 US
+1 253 205 0468 US
+1 253 215 8782 US (Tacoma)
+1 346 248 7799 US (Houston)
+1 360 209 5623 US
+1 386 347 5053 US
+1 507 473 4847 US
+1 564 217 2000 US
+1 669 444 9171 US
+1 669 900 6833 US (San Jose)
+1 689 278 1000 US

Meeting ID: 895 8055 9014

Passcode: 961547

Find your local number: https://us@2web.zoom.us/u/kx0fdeUsU

Euclid

Computational Logic”

Organon

“Universal

7

Entscheid.ungsproblem

Leibniz

/

An
Investigation
of the Laws
of Thought

2020 2021

Intro to (Formal) Logic (& Al)

wo > —

'S M — C 00 S

~ XK

Euclid

Computational Logic’

Organon

“Universal

7

Entscheid.ungsproblem

Leibniz

/

An
Investigation
of the Laws
of Thought

bic Vheorist

P

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

»nwo o —

'S M — C 00 S

~ XK

“Universal
Computational Logic’

7

Entscheid.ungsproblem

Leibniz

/

Euclid Organon

An
Investigation
of the Laws
of Thought

bic Vheorist

P

2020 2021

Intro to (Formal) Logic (& Al)

o—9O

»nwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon

An "
Investigation
of the Laws
of Thought

bic Vheorist

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

»nwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

bic Vheorist

o—9O

2020 2021

An "
Investigation
of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon
Intro to (Formal) Logic (& Al)

Church

»nwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

bic Vheorist

o—9O

2020 2021

4
An b
Investigation
of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon
Intro to (Formal) Logic (& Al)

Church

»nwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

bic Vheorist

o—9O

2020 2021

4
An b
Investigation
of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon
Intro to (Formal) Logic (& Al)

Church

»nwo > —

'S M — C 00 S

~ XK

“Universal
Computational Logic”

7

Entscheid.ungsproblem

bic Vheorist

An

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation
of the Laws
of Thought

o—9O

2020 2021

2
A
l

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

Church

»nwo o —

'S M — C 00 S

~ XK

New for Today:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

Entscheid.ungsproblem

bic Vheorist

300 BC 1666

Leibniz

/

Organon

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

first-order logic (FOL).

being, at bottom, formal proofs in

2020 2021

An]
Investigation
of the Laws
of Thought

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

g

Church Turing Post

»nwo > —

'S M — C 00 S

~ XK

New for Today:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

Entscheid.ungsproblem

300 BC 1666

An

of the Laws
of Thought

Leibniz

/

Organon

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Investigation

Church

Turing

bic Vheorist

g

Post

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»nwo > —

'S M — C 00 S

~ XK

New for Today:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

300 BC 1666

An

of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

g

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»nwo > —

'S M — C 00 S

~ XK

New for Today:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

300 BC 1666

An

of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

'« ///

2020 2021

Intro to (Formal) Logic (& Al)

Lk

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»nwo > —

'S M — C 00 S

~ XK

New for Today:
Functional = Church;
Procedural = Turing.

Where is logic-based/logicist
computation/programming?

“Universal
Computational Logic”

7

300 BC 1666

An

of Thought

Leibniz

/

Organon

xceeds Leibniz & de-mystifies
uclid: the “compellingness” of
hese proofs consists in their
eing, at bottom, formal proofs in
rst-order logic (FOL).

Investigation
of the Laws

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

g

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»nwo > —

'S M — C 00 S

~ XK

For Educators v Give Now v About v

Home » Courses » Electrical Engineering and Computer Science » Programming Languages

Programming Languages

Instructor(s)
COURSE HOME Prof. Michael Ernst
MIT Course Number
6.821
SYLLABUS
As Taught In
Fall 2002
CALENDAR
Level
Graduate
ASSIGNMENTS
EXAMS
Programming computer screen. (Photo courtesy of
TOOLS openphoto.net.)
DOWNLOAD COURSE Course Features
MATERIALS

> Assignments: programming (no examples) > Exams (no solutions)

Course Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics
covered include: meta-circular interpreters, semantics (operational and denotational), type
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.

SYLLABUS

CALENDAR

ASSIGNMENTS

EXAMS

TOOLS

DOWNLOAD COURSE
MATERIALS

MIT Course Number
6.821

As Taught In
Fall 2002

Level
Graduate

CITE THIS COURSE

Programming computer screen. (Photo courtesy of
openphoto.net.)

Ve

Course Features

> Assignments: programming_(no examples) > Exams (no solutions)

Course Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics
covered include: meta-circular interpreters, semantics (operational and denotational), type
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.

SYLLABUS

CALENDAR

ASSIGNMENTS

EXAMS

TOOLS

DOWNLOAD COURSE
MATERIALS

MIT Course Number
6.821

As Taught In
Fall 2002

Level
Graduate

CITE THIS COURSE

Programming computer screen. (Photo courtesy of
openphoto.net.)

Ve

Course Features

> Assignments: programming_(no examples) > Exams (no solutions)

Course Description

1 teaches the principles of functional, imperative, and logic programming languages.)Topics
cou . _ : . : . . . e
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.

Syllabus
Programming Languages CSCI-4430

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

I. Brief Course Description

This course is a study of important concepts in programming languages. Topics include programming language syntax and semantics, types and parameter passing, and programming paradigms
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for administrative questions, including homework extension requests, quiz and exam makeup
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will become more productive programmers, will be able to learn new programming languages with
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming language syntax and semantics, 2) implement a front-end for a programming language, 3)

explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, which are essential building blocks of programming languages, and 4) demonstrate competence
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and Haskell.

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.
IV. Class Work and Policies

Quizzes

There are 9 quizzes that should be completed and submitted individually. We will drop the lowest quiz grade and only 8 will count towards the final grade. Quizzes will be administered on Submitty
at the beginning of our regularly scheduled class time. We will be offering alternative times for quizzes and exams. If you are unable to attend during regularly scheduled class hours, you must
request an alternative time. Email course staff at proglang@cs.lists.rpi.edu by September 10 outlining the reasons why you will be attending at an alternative time (e.g., you reside in a different time
zone). We will assign an alternative time and you will be taking the quizzes during this time slot on the date of the quiz. Note that once assigned, you cannot change the quiz time slot.

Syllab
Programming Langt

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

|. Brief Course Description

This course is a study of important concepts in programming languages. Topics include programming
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for a
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will bec
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming
explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, \
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and |

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.

IV. Class Work and Policies

Syllab
Programming Langt

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

|. Brief Course Description

ing languages. Topics include programming
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for a
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will bec
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming
explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, \
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and |

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.

IV. Class Work and Policies

There are Iwo Logicist Branches;
Bl:

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell

https://en.wikipedia.org/wiki/Haskell_(programming_language)

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell OCaml, Scheme, ...

https://en.wikipedia.org/wiki/Haskell_(programming_language)

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell OCaml, Scheme, ...
Athena

https://en.wikipedia.org/wiki/Haskell_(programming_language)
http://www.proofcentral.org/athena/

Iwo Logicist Branches; B2:

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Prolog?

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

HyperSlate® : Hyperl og®

https://rpi.logicamodernapproach.com

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

oo I I ROl)

PGLP

HyperSlate® : Hyperl og®

https://rpi.logicamodernapproach.com

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

oo I I ROl)

PGLP

HyperSlate® : Hyperl og®

https://rpi.logicamodernapproach.com

HyperLog:
Historico-logico-programming Landscape

SCh?Zg‘;'“ke' simple type theory A ML
= e t
s e
i Church Lisp e Lisp Family
Combinatory Logic A-calculus n Clojure
d

First “logic programs” Liebniiz Frege
300 BC Dies 1716 1893

(‘i’
; Logic Theorist
' (birth of modern logicist Al) Prolog Hyperl_og

1956

Fortran

Turing Java

Smalltalk

HyperLog:
Historico-logico-programming Landscape

Schc'ljggglnkel simple type theory

-~ &
h
Church

Combinatory Logic A-calculus Clojure

ML

Lisp Lisp Family

5 0 3+

First “logic programs” Liebniiz Frege
300 BC Dies 1716 1893

7{1
3 | .
— wﬁ z | ocic. Theorist >
» ’ (b\rth(gf modern logicist Al) Prolog Hyperl_og

Fortran

Java

Smalltalk

HyperLog:
Historico-logico-programming Landscape

Schc'ljggglnkel simple type theory

-~ &
h
Church

Combinatory Logic A-calculus Clojure

ML

Lisp Lisp Family

5 0 3+

First “logic programs” Liebniiz Frege
300 BC Dies 1716 1893

7{1
3 | .
— wﬁ z | ocic. Theorist >
» ’ (b\rth(gf modern logicist Al) Prolog Hyperl_og

Fortran

Java

Smalltalk

HyperLog:
Historico-logico-programming Landscape

Schc'ljggglnkel simple type theory

-~ &
h
Church

Combinatory Logic A-calculus Clojure

ML

Lisp Lisp Family

5 0 3+

First “logic programs” Liebniiz Frege
300 BC Dies 1716 1893

7{1
. 7 ~ \
— v’ﬂ z | ocic. Theorist >
» ’ (b\rth(gf modern logicist Al) Prolog Hyperl_og

Fortran

Java

Smalltalk

HyperLog:
Historico-logico-programming Landscape

SCh?Zg‘;'”ke' simple type theory A ML
= 9 t
h)
- A . . .
Church Lisp e Lisp Family
. N .
Combinatory Logic A-calculus Clojure
5 a \
— vﬂ | ocic. Theorist — >
.‘] (birth of modern logicist Al) Prolog Hyperl_og

4
First “logic programs” Liebniiz Frege 1
300 BC Dies 1716 1893 :
1
I
[]
1
I
[]
1
Fortran)
]
\ 4
Java

Smalltalk

HyperLog:
Historico-logico-programming Landscape

SCh?Zg‘;'”ke' simple type theory A ML
P \ h) -t
h h
| Church Lisp e Lisp Family
Combinatory Logic A-calculus n Clojure
: d \
— vﬂ | ocic. Theorist — >
.‘ 1 (birth of modern logicist Al) Prolog Hyperl_og
/1-Prolog 4
First “logic programs” Liebniiz Frege [}
300 BC Dies 1716 1893 :
1
I
[]
1
I
[]
1
Fortran N
]
\ 4
Java

Smalltalk

Single-Slide Encapsulation ...

R EEEEEE PROGRAMme Lead: Liesbeth De Mol

EEEEEEEEE

P L
L= (LT) d =

R : (P,q) — (YINU,8, m(s)]as))
C : mla — (YIN]U,0)

https://pro.univ-lille.fr/liesbeth-de-mol/
https://programme.hypotheses.org

L:=(L,T) /

Z H Y‘N’U 5 W(S)‘CV(S)
F (C ; 77(3)‘04(3) — (Y|N|U, 9)

|

checker

A Hard Question ...

Easy Question

Easy Question

What is pure procedural programming!?

Another Easy Question

Another Easy Question

What is pure functional programming?

A Hard Question

A Hard Question

What is pure logic programming?

A Hard Question

What is pure logic programming!?

A Hard Question

What is pure logic programming?

Naveen: “Using automated
theorem provers; in fact, you
can just use HyperSlate.®”

“Direct” Programming in HyperSlate®

VmViVod®do,m :i — o< P 2 ¢,

Collection of nodes in HyperSlate®

Single node in HyperSlate®.

And just use the oracles to collaborate with youl!

Ingredients for Making a PGLP Program ...

On the Anatomy of a PGLP Program

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10
L'lf meta-level| language dx I‘ank(gb) =X {gb} —y U }: 0
L object-level language ¢ w 5

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10
L'lf meta-level| language dx I‘ank(gb) =X {gb} —y U }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = Py

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({¢} = A {¢} = 5) |—'u2 {gb})
L'lf meta-level| language Jzx rank(¢p) =z {o} Y UE ¢

L object-level language ¢ w 5 C,%

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = P + ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({¢} = A {¢} = 5) |—'u2 {gb})
L'lf meta-level| language Jzx rank(¢p) =z {o} Y UE ¢

L object-level language ¢ w 5 C,%

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

+ ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Al today ...

Al today:

Rusuell

Norvig

| Intelligence
|

Rusnuell

Norvig

C“; Stanford Encyclopedia of Philosophy

& Browse @ About

Entry Contents
Bibliography

Academic Tools

Friends PDF Preview
Author and Citation Info

Back to Top

e

@

@ Support SEP Search SEP Q

Artificial Intelligence

First published Thu Jul 12,2018

Artificial intelligence (Al) is the field devoted to building artificial animals (or at least artificial
creatures that — in suitable contexts — appear to be animals) and, for many, artificial persons (or
at least artificial creatures that — in suitable contexts — appear to be persons)."! Such goals
immediately ensure that Al is a discipline of considerable interest to many philosophers, and this
has been confirmed (e.g.) by the energetic attempt, on the part of numerous philosophers, to
show that these goals are in fact un/attainable. On the constructive side, many of the core
formalisms and techniques used in AI come out of, and are indeed still much used and refined in,
philosophy: first-order logic and its extensions; intensional logics suitable for the modeling of
doxastic attitudes and deontic reasoning; inductive logic, probability theory, and probabilistic
reasoning; practical reasoning and planning, and so on. In light of this, some philosophers
conduct Al research and development as philosophy.

https://plato.stanford.edu/entries/artificial-intelligence/

Al

ercept action

\4
v

%’ Stanford Encyclopedia of Philosophy

BBrowse @About @ Support SEP arch a
S o)
blogesty Artificial Intelligence
st Firt ublshed T 12,2015
Friends PDF Preview [} Artificial intelligence (AI) is the field devoted to building artificial animals (or at least artificial

creatures that ~ in suitable contexts ~ appear 1o be animals) and, for many, artificial persons (or

at least artificial creatures that ~ in suitable contexts — appear to be persons)."! Such goals

immediately ensure that Al s a discipline of considerable interest to many philosophers, and this
erous philosophers,

Author and Citation Info

BacktoTop

has 2)by the p:
show that these goals are in fact un/attainable. On the constructive side, many of the core
formalisms and techniques used in AT come out of, and are indeed still much used and refined in,
philosophy: first-order logic and its extensions; intensional logics suitable for the modeling of

i and c,

ud ; inductive bability th Arrificial Intel
reasoning: practical reasoning and planning, and so on. In light of this, some philosophers A Mo A A
conduct Al research and developmentas philosophs
prment a philosophy. Nore

Rusnell

https://plato.stanford.edu/entries/artificial-intelligence/

%’ Stanford Encyclopedia of Philosophy

& Browse @ About

Entry Contents
sibliography

Academic Tools

Friends PDF Preview
Author and Citation nfo

BacktoTop

Al:

A (Turing-level) entity that computes.

Al

ercept action

C— .

\4

@ Support SEP . a

Artificial Intelligence
Fi pusished T 12,2018

Artificial intelligence (AI) i the field devoted to building artficial animals (or at least artficial
ereatures that ~ in suitable contexts — appear 1o be animals) and, for many, art ns (or
at least artificial creatures that ~ in suitable contexts — appear to be persons)."! Such goals
immediately ensure that Al s a discipline of considerable interest to many philosophers, and this
has 2) by the energetic at the part of numerous philosophers, &
show that these goals are in fact un/attainable. On the constructive side, many of the core
formalisms and techniques used in AT come out of, and are indeed still much used and refined in,
philosophy: first-order logic and its extensions; intensional logics suitable for the modeling of
doxastic attitudes and deontic reasoning; inductive logic, probability theory, and probabilistic
reasoning; practical reasoning and planning, and so on. In light of this, some philosophers
conduct Al research and development as philosophy.

Artificial Intelligence

A M

Rusnell

Norvig

https://plato.stanford.edu/entries/artificial-intelligence/

Resurrection of The Triad

The Triad Resurrected & Rebuilt, & Better

Logic Al
£ percept action
- 5 —>
P L
L= (L,T) a__L

R : (P,q) — (YN|U, 6, 7(s)|x(s))
C : mla — (YN[, 0)

Pure General Logic Programming

The Triad Resurrected & Rebuilt, & Better

Logic Al
£ percept action
- 5 —>
P L
L= (LT a__L

R : (P,q) — (YN|U, 6, 7(s)|x(s))
C : mla — (YN[, 0)

Pure General Logic Programming

The Triad Resurrected & Rebuilt, & Better

Logic Al

percept]P) action
£ _ >

P L

- q L
£=LI) R (Bq— ONraw)

C - 7T(S)|Of(5) — (Y|N|U, 9)

Pure General Logic Programming

What’s Part 2 about ? ...

PROGRAMMING
LANGUAGE
PRAGMATICS

Michael L. Scott

Alternative Pro-
gramming
Models

As we noted in Chapter 1, programming languages
are traditionally though imperfectly classified into
various imperative and declarative families. We have
had occasion in Parts I and II to mention issues of
particular importance to each of the major families.
Moreover much of what we have covered—syntax,
semantics, naming, types, abstraction—applies uni-
formly to all. Still, our attention has focused mostly
on mainstream imperative languages. In Part III we
shift this focus.

Functional and logic languages are the principal
nonimperative options. We consider them in Chap-
ters 11 and 12, respectively. In each case we struc-
ture our discussion around representative languages:
Scheme and OCaml for functional programming,
Prolog for logic programming. In Chapter 11 we also
cover eager and lazy evaluation, and first-class and
higher-order functions. In Chapter 12 we cover
issues that make fully automatic, general purpose
logic programming difficult, and describe restrictions
used in practice to keep the model tractable.
Optional sections in both chapters consider mathe-

MATICS

1ael L. Scott

Models

As we noted in Chapter 1, programming languages
are traditionally though imperfectly classified into
various imperative and declarative families. We have
had occasion in Parts I and II to mention issues of
particular importance to each of the major families.
Moreover much of what we have covered—syntax,
semantics, naming, types, abstraction—applies uni-
formly to all. Still, our attention has focused mostly
on mainstream imperative languages. In Part III we
shift this focus.

Functional and logic languages are the principal
nonimperative options. We consider them in Chap-
ters 11 and 12, respectively. In each case we struc-
ture our discussion around representative languages:
Scheme and OCaml for functional programming,
Prolog for logic programming. In Chapter 11 we also
cover eager and lazy evaluation, and first-class and
higher-order functions. In Chapter 12 we cover
issues that make fully automatic, general purpose
logic programming difficult, and describe restrictions
used in practice to keep the model tractable.
Optional sections in both chapters consider mathe-

Models

As we noted in Chapter
are traditionally though 1
various imperative and d
had occasion in Parts I af
particular importance to
Moreover much of what
semantics, naming, types
formly to all. Still, our at
on mainstream imperatiy
shift this focus.
Functional and logic la
nonimperative options. \
ters 11 and 12, respectiv
ture our discussion aroul
Scheme and OCaml for fj
Prolog for logic programi
cover eager and lazy eval
higher-order functions. I
issues that make fully au
logic programming diffic
used in practice to keep t
Optional sections in bot}

matical foundations: Lambda Calculus for functional
programming, Predicate Calculus for logic
programming.

The remaining two chapters consider concurrent
and scripting models, both of which are increasingly
popular, and cut across the imperative/declarative
divide. Concurrency is driven by the hardware par-
allelism of internetworked computers and by the
coming explosion in multithreaded processors and
chip-level multiprocessors. Scripting is driven by the
growth of the World Wide Web and by an increasing
emphasis on programmer productivity, which places
rapid development and reusability above sheer run-
time performance.

Chapter 13 begins with the fundamentals of con-
currency, including communication and synchroniza-
tion, thread creation syntax, and the implementation
of threads. The remainder of the chapter is divided
between shared-memory models, in which threads use
explicit or implicit synchronization mechanisms to
manage a common set of variables, and (on the com-
panion site) message-passing models, in which threads
interact only through explicit communication.

The first half of Chapter 14 surveys problem
domains in which scripting plays a major role: shell
(command) languages, text processing and report
generation, mathematics and statistics, the "gluing"
together of program components, extension mecha-
nisms for complex applications, and client and
server-side Web scripting. The second half considers
some of the more important language innovations
championed by scripting languages: flexible scoping
and naming conventions, string and pattern manipu-
lation (extended regular expressions), and high level
data types.

Back to p.9 941 of 1819 Last page

S¢
fq

sl

[
al

w

Cd

19
1d

I matical foundations: Lambda Calculus for functional

programming, Predicate Calculus for logic
programming.

The remaining two chapters consider concurrent
and scripting models, both of which are increasingly
popular, and cut across the imperative/declarative
divide. Concurrency is driven by the hardware par-
allelism of internetworked computers and by the
coming explosion in multithreaded processors and
chip-level multiprocessors. Scripting is driven by the
growth of the World Wide Web and by an increasing
emphasis on programmer productivity, which places
rapid development and reusability above sheer run-
time performance.

Chapter 13 begins with the fundamentals of con-
currency, including communication and synchroniza-
tion, thread creation syntax, and the implementation
of threads. The remainder of the chapter is divided
between shared-memory models, in which threads use
explicit or implicit synchronization mechanisms to
manage a common set of variables, and (on the com-
panion site) message-passing models, in which threads
interact only through explicit communication.

The first half of Chapter 14 surveys problem
domains in which scripting plays a major role: shell
(command) languages, text processing and report
generation, mathematics and statistics, the "gluing"
together of program components, extension mecha-
nisms for complex applications, and client and
server-side Web scripting. The second half considers
some of the more important language innovations
championed by scripting languages: flexible scoping
and naming conventions, string and pattern manipu-
lation (extended regular expressions), and high level
data types.

A4

S¢
fq

sl

[
al

w

Cd

19
1d

n |
I matical foundations: Lambda Calculus for functional

programming, Predicate Calculus for logic
programming.

The remaining two chapters consider concurrent
and scripting models, both of which are increasingly
popular, and cut across the imperative/declarative
divide. Concurrency is driven by the hardware par-
allelism of internetworked computers and by the
coming explosion in multithreaded processors and
chip-level multiprocessors. Scripting is driven by the
growth of the World Wide Web and by an increasing
emphasis on programmer productivity, which places
rapid development and reusability above sheer run-
time performance.

Chapter 13 begins with the fundamentals of con-
currency, including communication and synchroniza-
tion, thread creation syntax, and the implementation
of threads. The remainder of the chapter is divided
between shared-memory models, in which threads use
explicit or implicit synchronization mechanisms to
manage a common set of variables, and (on the com-
panion site) message-passing models, in which threads
interact only through explicit communication.

The first half of Chapter 14 surveys problem
domains in which scripting plays a major role: shell
(command) languages, text processing and report
generation, mathematics and statistics, the "gluing"
together of program components, extension mecha-
nisms for complex applications, and client and
server-side Web scripting. The second half considers
some of the more important language innovations
championed by scripting languages: flexible scoping
and naming conventions, string and pattern manipu-
lation (extended regular expressions), and high level
data types.

A4

The Universe of Logics

2 = first-order logic

L DCECT

%y = zeroth-order logic

Deductive

The Universe of Logics

% = first-order logic

L DCECT

Starter Hyperlog®: Datalog

%y = zeroth-order logic

Datalog Syntax

(program) P = P1L NP A ...\ Dy,
(horn-clause formula) ¢; = ar A ANy =
(atomic formula) o = R(ty,ta,...t,)
(terms) t = e

where z is a variable and ¢ a constant

Starter Hyperlog®: Datalog

%y = zeroth-order logic

Datalog Syntax

(program) P D1 NP A ...\ Dy,
(horn-clause formula) ¢; ar A ANy =
(
(

atomic formula) o = R(ty,ta,...t,)
terms) t = x| c

where z is a variable and ¢ a constant

HyperGrader@ Problem Categories ¥ HyperSlate My Progression Leader Board | Spring 2021 RPI Selmer.Bringsjord@gmail.com (longsnowflake876) ~

Create file

Propositional Calculus Lo = Pure Predicate Calculus L, = First-order Logic L, = Second-order Logic ﬂ m E
DCEC (fragment) Hyperlog

Starter Hyperlog®: Datalog

%y = zeroth-order logic

Datalog Syntax

(program) P D1 NP A ...\ Dy,
(horn-clause formula) ¢; ar A ANy =
(
(

atomic formula) o = R(ty,ta,...t,)
terms) t = x| c

where z is a variable and ¢ a constant

HyperGrader@ Problem Categories ¥ HyperSlate My Progression Leader Board | Spring 2021 RPI Selmer.Bringsjord@gmail.com (longsnowflake876) ~

Create file

Propositional Calculus Lo = Pure Predicate Calculu L, = First-order Logic L, = Second-order Logic ﬂ m E
DCEC (fragment) Hyperlog

Starter HyperLog®: Datalog

From “Introduction to Datalog,” an excellent online piece.

PROLOG

DATALOG
+ NEGATTON

DATALOG

RELATIONAL
ALGEBRA

N
>

EXPRESSIVE POWER

https://x775.net/2019/03/18/Introduction-to-Datalog.html

Z

—~ Starter HyperLog®: Datalog

From “Introduction to Datalog,” an excellent online piece.

PROLOG

DATALOG
+ NEGATTON

DATALOG

RELATIONAL
ALGEBRA

N
>

EXPRESSIVE POWER

https://x775.net/2019/03/18/Introduction-to-Datalog.html

Starter HyperLog®: Datalog

From “Introduction to Datalog,” an excellent online piece.

PROLOG

DATALOC
+ NEGAT

DATALOG

RELATIONAL
ALGEBRA

2y

N
>

EXPRESSIVE POWER

https://x775.net/2019/03/18/Introduction-to-Datalog.html

Starter HyperLog®: Datalog

Z

C

From “Introduction to Datalog,” an excellent online piece.

PROLOG

DATALOC
+ NEGAT

DATALOG

RELATIONAL
ALGEBRA

2y

N
>

EXPRESSIVE POWER

https://x775.net/2019/03/18/Introduction-to-Datalog.html

Starter HyperLog®: Datalog

From “Introduction to Datalog,” an excellent online piece.

PROLOG

DATALOC
+ NEGAT

DATALOG

RELATIONAL
ALGEBRA

N
>

EXPRESSIVE POWER

https://x775.net/2019/03/18/Introduction-to-Datalog.html

Slutten

Slutten

Part Il

Review of All Inference Rules/
Schemata in PropCalc = &,

